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Abstract

Locks are an essential building block for high-performance

multicore system software. To meet performance goals, lock

algorithms have evolved towards specialized solutions for ar-

chitectural characteristics (e.g., NUMA). However, in practice,

applications run on different server platforms and exhibit

widely diverse behaviors that evolve with time (e.g., num-

ber of threads, number of locks). This creates performance

and scalability problems for locks optimized for a single sce-

nario and platform. For example, popular spinlocks suffer

from excessive cache-line bouncing in NUMA systems, while

scalable, NUMA-aware locks exhibit sub-par single-thread

performance.

In this paper, we identify four dominating factors that im-

pact the performance of lock algorithms. We then propose a

new technique, shuffling, that can dynamically accommodate

all these factors, without slowing down the critical path of

the lock. The key idea of shuffling is to re-order the queue

of threads waiting to acquire the lock in accordance with

some pre-established policy. For best performance, this work

is done off the critical path, by the waiter threads. Using

shuffling, we demonstrate how to achieve NUMA-awareness

and implement an efficient parking/wake-up strategy, with-

out any auxiliary data structure, mostly off the critical path.

The evaluation shows that our family of locks based on shuf-

fling improves the throughput of real-world applications

up to 12.5×, with impressive memory footprint reduction

compared with the recent lock algorithms.

CCS Concepts • Software and its engineering → Mu-

tual exclusion.

Keywords mutual exclusion, memory footprint, Linux.
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Figure 1. Impact of locks on a file-system micro-benchmark that

spawns threads to create new files in a shared directory (MWCM [39]).

A process stresses the writer side of the readers-writer lock.We eval-

uate the Linux baseline version (Stock), CST [27], Cohort lock [18],

and our proposed ShflLock. (a) File creation throughput on an

8-socket 192-core machine. (b) Total memory consumed by locks

that are part of the inode structure.
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1 Introduction

The introduction of multicore machines marked the end of

the “free lunch”[47], making concurrent programming, es-

pecially lock-based mutual exclusion, a critical approach to

improve the performance of applications. Lock algorithms

determine the scalability of applications in multicore ma-

chines [3, 5, 21].

Since the invention of concurrent programming, lock de-

sign has been influenced by hardware evolution. For instance,

MCS [37] was proposed to address excessive cache-line traffic

resulting from an increasing number of threads trying to ac-

quire the lock at the same time, while Cohort locks [18] were

proposed in response to the emergence of the non-uniform

memory access (NUMA) architecture. NUMA machines con-

sist of multiple nodes (or sockets), each with multiple cores,

locally attached memories, and fast caches. In such machines,

the access from a socket to its local memory is faster than

remote access to memory on a different socket [44] and each

socket has a shared last-level-cache. Cohort locks exploit

this characteristic to improve application throughput.

Unfortunately, the influence of hardware evolution on

lock design has resulted in a tight coupling between hard-

ware characteristics and lock algorithms. Meanwhile, other

factors have been neglected, such as memory footprint [10],

low thread counts, and core over-subscription. For exam-

ple, Cohort locks can achieve high throughput at high core

counts, but also require memory proportional to the num-

ber of sockets. The extra memory is unacceptable for some

applications, such as databases and OSes, which can have

https://doi.org/10.1145/3341301.3359629
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millions of locks. Moreover, Cohort locks have sub-optimal

single-thread performance due to using multiple atomic in-

structions. Figure 1 shows an example of such a scenario:

benchmark throughput is affected at lower thread count

due to multiple atomic operations (Cohort and CST), and at

higher thread count (from four threads) due to the bloated file

structure (inode) caused by the large lock memory footprint

because inode allocation starts stressing the kernel memory

allocator. For example, the size of the inode structure grows

by 3.4× with the Cohort lock.

In this paper, we investigate the main dominating factors

that impact the scalability of locks and their adoption: 1)

cache-line movement between different caches, 2) level of

thread contention, 3) core over-subscription, and 4) memory

footprint. We find that none of the existing locks perform

well on all factors. We propose a new lock design technique

called shuffling that decouples the lock-acquire/release

phases from the lock order policy, and uses lock waiters (i.e.,
threads waiting to acquire the lock) to enforce those policies,

mostly off the critical path. In shuffling, a waiter in the wait-

ing queue takes the role of a shuffler and re-orders the queue

of waiters based on the specified policy. This technique gives

us the freedom to design and multiplex new policies based

not only on the characteristics of fast-evolving hardware,

but also on software characteristics. Our new family of locks,

called ShflLocks, augment existing locks (TAS and MCS)

and use shuffling. Our first lock algorithm is a non-blocking

lock that implements NUMA-awareness as a shuffling pol-

icy to implement a compact NUMA-aware lock. We further

add a core over-subscription policy to implement a block-

ing lock. We also implement a readers-writer lock on top

of our blocking lock. We evaluate our locks in both kernel

space and in userspace, and find that our lock algorithms

maintain the best throughput regardless of the number of

threads contending for the lock. In particular, ShflLocks im-

prove application throughput by 1.2–12.5×, while reducing

the memory footprint up to 35.4% and 98.8%, against the cur-

rently used Linux kernel locks and against state-of-the-art

locks, respectively.

This paper makes the following contributions:

• Technique. We propose shuffling, a technique that

provides a new mechanism to implement locks with

different policies, without increasing lock acquire/re-

lease overhead.

• New lock family. Based on the shuffling mechanism,

we propose a family of ShflLocks: non-blocking, block-

ing, and blocking readers-writer locks. They areNUMA-

aware, have a small memory footprint, and maintain

the best performance for varying contention levels.

• Performance evaluation.Our evaluation shows that

ShflLocks improve application throughput up to 12.5×

relative to simple locks, while incurring 13× lower

memory overheads compared with state-of-the-art

blocking locks.
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Figure 2. Indirect metric of the growing complexity of lock usage:

the number of lock() API calls in the Linux kernel source code.

2 Background and Motivation

We first describe the general evolution of locks and later

contrast it with lock evolution inside the Linux kernel.

Lock design. Since the dawn of concurrent programming,

hardware has been the dominant factor [13] in the evolu-

tion of lock algorithms. For instance, queue-based locks [37]

reduce cache traffic relative to test-and-set (TAS) and ticket

locks. On NUMA architectures [25, 44], hierarchical locks

improve throughput [8, 9, 17, 18, 34] as they amortize remote

access cost by physically partitioning a lock into a global lock

and per-node locks. Unfortunately, hierarchical locks have

two issues: degraded performance for small numbers of cores,

and, most importantly, memory overhead. AHMCS [9] and

CST [27] partially address one of these issues, but not both

concurrently. Our approach is closest to that of CNA [16]

and Malthusian locks [14] that reorder an MCS-like queue

of waiting threads to improve NUMA performance (CNA) or

to block surplus threads (Malthusian). Compared to these

locks, shuffling introduces two important innovations. First,

in shuffling, queues are reordered by waiting threads, rather

than lock-holding threads; this keeps the critical path fast

and supports a wider range of ordering policies. Second, only

waiting threads must maintain queue nodes—lock-holding

threads can deallocate them. This simplifies lock deployment

and supports important optimizations, such as lock stealing.

We observe a similar evolution in designing readers-writer

locks. Mellor-Crummey and Scott [38] proposed variants of

readers-writer locks on top of the queue-based locks. How-

ever, these locks create coherence traffic in NUMAmachines.

Calciu et al. [6] proposed a per-socket read indicator on top

of Cohort locks to localize the reader contention within a

socket, but both per-socket or per-CPU [29] approaches re-

quire extra memory and are beneficial only in particular

cases [11, 42, 51].

Locks in the kernel space. Over the past decade, the Linux

kernel has been striving for more concurrency by switching

to finer granularity locks. Figure 2 shows the increase in the

number of locks as well as their use. One of the most signifi-

cant goals is to maintain optimal single-thread performance.

In addition, lock design must consider: 1) the interaction

with the scheduler, 2) the size of the lock structure, and 3)

avoiding any explicit memory allocation. These factors have

led to sophisticated optimizations. The spinlock is the pri-

mary locking construct in Linux; it has evolved from TAS to



Factors

Non-blocking locks Blocking locks

ShflLock
TAS MCS [37] Cohort [18] CNA [16] mutex [40] CST [27]

F1. Cache-line movement Very high High Low Low High Low Low

F2. Thread contention

F3. Core subscription (U/O) - – – – ×/ ✓ ×/ ✓ ✓/ ✓

F4.

Memory footprint Per lock: 1 8 1,152
‡

8 40 1,056
‡

12

(bytes) Per waiter: 0 12 24 28 32 24 28

Per lock-holder: 0 12 24 28 0 0 0

Atomic instructions per acquire and release: 1/∞ 2/1 4/≈2 2/≈2 1/≈4 ≈6/≈3 1/≈2

U: Under-subscribed; O: Over-subscribed.
‡
For CST and Cohort locks, we use an eight-socket machine as a reference.

→ 1–2 threads → 1 socket → > 1 socket → Optimal throughput → Sub-optimal throughput → Worst throughput

Table 1. Dominant factors affecting locks that are in use in the Linux kernel or are the state-of-the-art for NUMA architecture. Cache-line

movement refers to data movement inside a critical section. Boxes represent the scalability of locks with increasing thread count from one

thread to threads within a socket to all threads among multiple sockets. Core subscription is only applicable to blocking locks and denotes the

best throughput for a varying number of threads. Both mutex and CST are sub-optimal when under-subscribed but maintain good throughput

once they are over-subscribed. Memory footprint is the memory allocation for locks: the size of each lock instance (per lock), a queue node

required by each waiting thread before entering the critical section (per waiter), and a queue node retained by a lock holder within the

critical section (per lock-holder). If the lock holder uses the queue node, which happens for MCS, CNA, and Cohort locks, the thread must

keep track of the node, as it can acquire multiple locks: a common scenario in Linux. Note that queue nodes can be allocated on the stack for

each algorithm. However, in practice, a lock user needs to explicitly allocate it on the stack for MCS, CNA, and Cohort locks, while mutex, CST,

and ShflLocks avoid this complexity. We also summarize the number of atomic instructions in the non-contended/contended scenarios.

ticket locks to an MCS variant [32]. The current design is an

amalgamation of two locks: a TAS lock in the fast path and

an MCS lock in the slow path. The second most widely used

lock is the mutex, which incorporates a fast path comprising

of TAS, an abortable queue-based spinning in mid-path [33],

and a parking list per-lock instance in the slow path. Be-

cause of the mid-path, along with optimized hand-over-hand

locking, mutex ensures long-term fairness [33]. The readers-

writer semaphore (rwsem) is an extension of mutex that en-

codes readers, writers, and waiting readers in an indicator.

rwsem maintains a single parking list in which both readers

and writers are added in the slow path. However, it suffers

from severe cache-line movement both when cores are over-

subscribed and when they are under-subscribed.

3 Dominating Factors in Lock Design

Locks not only serialize data access, but also add their over-

head, directly impacting application scalability. Looking at

the evolution of locks and their use, we identify four main

factors that any practical lock algorithm should consider.

These factors are critical in achieving good performance in

current architectures, but their relative importance can vary

not only across architectures, but also across applications

with varying requirements. Therefore, we should holistically

consider all four factors when designing a lock algorithm. Ta-

ble 1 shows how these factors impact state-of-the-art locks.

F1. Avoid data movement. Memory bandwidth and the

interconnect bandwidth between NUMA sockets are limited,

leading to performance bottlenecks when applications incur

remote cache traffic or remote memory accesses. Thus, every

lock algorithm should minimize cache-line movement and

remote memory accesses for both lock structures and data

inside the critical section. This movement is quite expensive

in NUMA machines: the cost of accessing a remote cache

line can be 3× higher than local access [13]. Moreover, for

future architectures, even L1/L2 cache-line movements will

further exacerbate this cost [41]. Similarly, for readers-writer

locks, their readers indicator incurs cache-line movement. A
lock algorithm should amortize data movement from both the
lock structure and the data inside the critical section, to hide
non-uniform latency and minimize coherence traffic.
F2. Adapt to different levels of thread contention. Most

multi-threaded applications use fine-grained locking to im-

prove scalability. For example, Dedup and fluidanimate [1]

create 266K and 500K locks, respectively. Similarly, Linux

has also adopted fine-grained locking over time (Figure 2)

and only a subset of locks heavily contend based on the

workload [3]. Generally, lock designs optimize either for low

contention or for high contention: TAS results in better per-

formance when contention is low, while Cohort locks are a

better choice for high contention. Similarly, the scalability

of a readers-writer lock is determined by its low-level design

and choices, such as using a centralized readers indicator vs.

per-socket indicators vs. per-core indicators impact scalabil-

ity depending on the ratio of readers and writers. For the best
performance in all scenarios, a lock algorithm should adapt to
varying thread contention.
F3. Adapt to over- or under-subscribed cores. Applica-

tions can instantiate more threads than available cores to

parallelize tasks, to improve hardware utilization, or to ef-

ficiently deal with I/O. In these scenarios, blocking locks

need to efficiently choose between spinning or sleeping,

based on the thread scheduling. Spinning results in the low-

est latency, but can waste CPU cycles and underutilize re-

sources while starving other threads, leading to lock-holder

preemption [26]. In contrast, sleeping enables threads to run

and utilize the hardware resources more efficiently. How-

ever, this can result in latency as high as 10ms to wake up



a sleeping thread. Thus, a lock algorithm should consider the
mapping between threads and cores and whether cores are
over-subscribed.
F4. Decrease memory footprint. The memory footprint

of a lock not only affects its adoption, but also indirectly

affects application scalability. Generally, the structures of a

lock are not allocated inside the critical section or on the

critical path, so many algorithms do not consider these al-

locations as a performance overhead. However, in practical

applications, locks are embedded inside other structures,

which can be instantiated on the critical path. In such scenar-

ios, this allocation aggravates the memory footprint, which

stresses the memory allocator, leading to performance degra-

dation. For example, Exim, a mail server, creates three files

for each message it delivers. Locks are part of the file struc-

ture (inode), so large locks can slow down allocation and

directly affect performance [10]. This is even worse for locks

that dynamically allocate their structure before entering the

critical section [27]. The memory allocation can fail, leading

to an application crash. Extra per-task or per-CPU alloca-

tions can further exacerbate the issue, e.g., for queue-based
locks [12, 24]. Memory footprint also affects readers-writer

scalability because the memory consumption dramatically

increases for the readers indicators from centralized (8 bytes)

to per-socket (1 KB) to per-CPU (24KB) for each lock in-

stance.
1 Thus, a lock algorithm should consider memory foot-

print, as it affects both the adoption of the lock and applications
performance.

4 ShflLocks

To adapt to such a diverse set of factors, we propose a new

lock design technique, called shuffling. Shuffling enables the

decoupling of lock operations from a lock policy enforce-

ment, which happens off the critical path. Policies can include

NUMA-awareness and efficient parking/wakeup strategies.

Using shuffling, we design and implement a family of lock

algorithms called ShflLocks. At its core, a ShflLock uses a

combination of TAS as a top-level lock and a queue of waiters

(similar to MCS). We rely on the shuffling mechanism to en-

able NUMA-awareness that minimizes cache-line movement

(F1). ShflLocksworkwell under high contention due to their
NUMA-awareness, while maintaining good performance for

low contention due to their TAS lock (F2). Besides NUMA-

awareness, we also add a parking/wakeup policy to design

an efficient blocking ShflLock (F3). ShflLocks requires a
constant, minimal data structure and does not require addi-

tional allocationswithin the critical section, thereby reducing

memory footprint (F4).

4.1 The Shuffling Mechanism

Shuffling is a new technique for designing locks in which a

thread waiting for the lock (the shuffler) re-orders the queue

1
Per-socket: 8 sockets × 128 bytes; per-CPU: 192 cores × 128 bytes.

of waiters (shuffles) based on a policy specified by the lock

developer. Shuffling is similar to sorting a list with a user-

defined comparison function. Here, the list represents a set of

waiters and the comparison function is a set of policies, such

as NUMA-awareness or a wakeup/parking strategy. This

shuffling mechanism is mostly off the critical path because a

thread handles the task of policy enforcement while waiting

to acquire the lock. Thus, shuffling enables the decoupling

of lock-acquire/release operations from policy enforcement,

and allows lock developers to easily optimize for particular

design factors (§3) or architectures. In this paper, we use a pol-

icy designed to optimize for NUMA architectures. Moreover,

shuffling can group multiple policies together to devise com-

plex lock algorithms. For example, in the blocking ShflLock

we combine the NUMA-aware policy with an efficient park-

ing/wakeup strategy: the shuffler groups waiters based on

their NUMA socket and wakes up a nearby sleeping waiter.

This approach solves the lock-waiter preemption problem by

removing the wake-up overhead from the lock-holder critical

path, a well-known issue for queue-based locks [7, 27, 45].

4.2 ShflLocks Design

We now present a family of ShflLock protocols, both non-

blocking (§4.2.1) and blocking (§4.2.2). We further augment

our blocking lock with a read indicator to design a block-

ing readers-writer lock (§4.2.3). We first enumerate a set of

design decisions and later focus on the design of these locks.

Lock state decoupling. Unlike the MCS protocol, we de-

couple the lock acquisition state from the waiter queue. We

achieve decoupling by introducing two levels of locks: a

TAS lock for handling non-contended cases and a queue-

based lock to handle moderate contention at the socket level.

This approach is similar to the Linux spinlock and has sev-

eral foundational benefits for building practical and scalable

locks: a) ShflLocks remove the complexity of node alloca-

tion and tracking for the waiters queue because a queue node

is only maintained within the acquire phase. This contrasts

with conventional MCS/CNA locks, which maintain the node

until the release phase. This prevents the lock-holder from

reusing the node for a nested acquisition; b) ShflLocks use

waiters for shuffling, moving work from the critical path to

threads that are waiting; c) ShflLocks provide a fast trylock

method with a single atomic compare-and-swap instruction;

and d) ShflLocksmitigate the lock-waiter preemption prob-

lem through two mechanisms. First, the shuffler wakes up

the next thread to acquire the lock proactively (§4.1). Second,

ShflLocks allow lock stealing using the internal TAS lock.

Scheduling-aware parking strategy. We use the conven-

tional spin-then-park strategy for blocking locks implemented

for kernel space, but with the help of the task scheduler. For

instance, waiters spin only for a duration allowed by the

kernel thread scheduler. The scheduler notifies
2
a task if

2
The Linux scheduler provides a need_resched() method inside the kernel

for yielding to the scheduler.
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Figure 3. ShflLock
NB

example. The lock structure consists of

a state (glock) and the queue tail. The first byte of glock is the

lock/unlock state, while the second byte denotes whether stealing

is allowed. We encode multiple information in the qnode structure.

(a) Initially, there is no lock holder. (b) t0 successfully acquires

the lock via CAS and enters the critical section. (c) t1, of socket 1,

executes SWAP on the lock’s tail after the CAS failure on TAS. (d)

Similarly, t2 from socket 1, also joins the queue. (e) Now, there are

five waiters (t1–t5) waiting for the lock. t1 is the very first waiter,

so it becomes the shuffler and traverses the queue to find waiters

from the same socket. t1 then moves t4 (same socket) after t2. (f)

After the traversal, t1 selects t4 as the next shuffler. (g) t4 acquires

the lock after t1 and t2 have executed their critical sections. At this

point, t3 becomes the shuffler.

it has utilized its current quota. Similar to CST locks [27],

a waiter only parks if the system is overloaded. To know

that, a waiter peeks at the number of active tasks on the

current CPU scheduling queue, which is regularly updated

by the scheduler. Otherwise, it yields to the scheduler, know-

ing that the scheduler will reschedule the task after some

bookkeeping.

4.2.1 Non-Blocking Version: ShflLock
NB

ShflLock
NB

uses a TAS and MCS combination, and main-

tains queue nodes on the stack [12, 24, 27]. However, we do

extra bookkeeping for the shuffling process by extending the

thread’s qnode structure with socket ID, shuffler status, and

batch count (to limit batching too many waiters from the

same socket, which might cause starvation or break long-

term fairness). Figure 3 shows the lock structure and the

qnode structure. Our current design of the shuffling phase

enforces the following four invariants for implementing any

policy: 1) The successor of the lock holder, if it exists, always

keeps its position intact in the queue. 2) Only one waiter can

be an active shuffler, as shuffling is single threaded. 3) Only

the head of the queue can start the shuffling process. 4) A

shuffler may pass the shuffling role to one of its successors.

Figure 3 presents a running example of our lock algorithm.

(a) A thread first tries to acquire the TAS lock; (b) it enters

the critical section on success; otherwise, it joins the wait-

ing queue ((c)–(e)). Now, the very next lock waiter, i.e., t1,
becomes the shuffler and groups waiters belonging to the

same socket, e.g., t4 (Figure 3 (e)). Once a shuffler iterates the

whole waiting queue, it selects the last moved waiter as the

next shuffler to start the process: t1 selects t4 (f). The shuffler

keeps retrying to find a waiter from the same socket and

leaves the shuffling phase after finding a successor from the

local socket (f) or becoming the lock holder (g). The passing

of a shuffler status, within a socket, lasts until the batching

quota is exceeded.

Figure 4 presents the pseudo-code of our non-blocking

version. The lock structure is 12 bytes (Figure 3): 4 bytes

for the lock state (glock), and 8 bytes for the MCS tail. The

algorithm works as follows: A thread t first tries to steal the

TAS lock (line 6). On failure, t initiates the MCS protocol by

first initializing a queue-node (qnode) on the stack, and then

adding itself to the waiting queue by atomically swapping

the tail with the qnode’s address (line 11–13). After joining

the queue, t waits until it is at the head of the queue. To do

that, t checks for its predecessor. If t is the first one in the

queue, it disables lock stealing by setting the second byte to 1

to avoid TAS lock contention and waiter starvation (line 17).

On the other hand, if waiters are present, t starts to spin

locally until it becomes the leader in the waiting queue, i.e.,
until its qnode’s status changes from S_WAITING to S_READY

(line 47). Here, t also checks for the is_shuffler status. If

the value is set, then t becomes the shuffler and enters the

shuffling phase (line 51), which we explain later.

On reaching the head of the queue, t checks whether it

can be a shuffler to group its successors based on the socket

ID, meanwhile trying to acquire the TAS lock via the CAS

operation (lines 20–30). Note that only the head of the queue

can start the shuffling process if the qnode’s batch is set to

0. Otherwise, t can only shuffle waiters if the is_shuffler

status is set to 1, which might be set by a previous shuffler.

The moment t becomes the lock holder, i.e., t acquires the
TAS lock, it follows the MCS unlock protocol (lines 33–40). t

checks for the next successor (qnode.next). If the successor

is present, t updates the successor’s qnode status to S_READY.

Otherwise, it tries to reset the queue’s tail and enables lock

stealing, which enables a new thread to get the lock via TAS

if the queue is empty. The unlock phase is a conventional

TAS unlock in which the first byte is reset to 0 (line 54).

Shuffling. Our shuffling algorithm moves a waiter’s qnode

from an arbitrary position to the end of the shuffled nodes in

the waiting queue. Based on the specified policy, i.e., socket-
ID-based grouping, the shuffler (S) either updates the batch

count or further manipulates the next pointer of waiting qn-

odes (line 84–100). We consider S as the first shuffled node.

The algorithm is as follows: S first resets its is_shuffler to

0 and checks its quota of the maximum allowed shufflings

to avoid starvation for remote socket waiters (line 71–73).



1 S_WAITING = 0 # Waiting on the node status
2 S_READY = 1 # The waiter is at the head of the queue
3

4 def spin_lock(lock):
5 # Try to steal/acquire the lock if there is no lock holder
6 if lock.glock == UNLOCK && CAS(&lock.glock, UNLOCK, LOCKED):
7 return
8

9 # Did not get the node, time to join the queue; initialize node states
10 qnode = init_qnode(status=S_WAITING, batch=0,
11 is_shuffler=False, next=None, skt=numa_id())
12

13 qprev = SWAP(&lock.tail, &qnode) # Atomically adding to the queue tail
14 if qprev is not None: # There are waiters ahead
15 spin_until_very_next_waiter(lock, qprev, &qnode)
16 else: # Disable stealing to maintain the FIFO property
17 SWAP(&lock.no_stealing, True) # no_stealing is the second byte of glock
18

19 # qnode is at the head of the queue; time to get the TAS lock
20 while True:
21 # Only the very first qnode of the queue becomes the shuffler (line 16)
22 # or the one whose socket ID is different from the predecessor
23 if qnode.batch == 0 or qnode.is_shuffler:
24 shuffle_waiters(lock, &qnode, True)
25 # Wait until the lock holder exits the critical section
26 while lock.glock_first_byte == LOCKED:
27 continue
28 # Try to atomically get the lock
29 if CAS(&lock.glock_first_byte, UNLOCK, LOCKED):
30 break
31

32 # MCS unlock phase is moved here
33 qnext = qnode.next
34 if qnext is None: # qnode is the last one / next pointer is being updated
35 if CAS(&lock.tail, &qnode, None): # Last one in the queue, reset the tail
36 CAS(&lock.no_stealing, True, False) # Try resetting, else someone joined
37 return
38 while qnode.next is None: # Failed on the CAS, wait for the next waiter
39 continue
40 qnext = qnode.next
41 # Notify the very next waiter
42 qnext.status = S_READY
43

44 def spin_until_very_next_waiter(lock, qprev, qcurr):
45 qprev.next = qcurr
46 while True:
47 if qcurr.status == S_READY: # Be ready to hold the lock
48 return
49 # One of the previous shufflers assigned qcurr as a shuffler
50 if qcurr.is_shuffler:
51 shuffle_waiters(lock, qcurr, False)
52

53 def spin_unlock(lock):
54 lock.glock_first_byte = UNLOCK # no_stealing is not overwritten

55 MAX_SHUFFLES = 1024
56

57 # A shuffler traverses the queue of waiters (single threaded)
58 # and shuffles the queue by bringing the same socket qnodes together
59 def shuffle_waiters(lock, qnode, vnext_waiter):
60 qlast = qnode # Keeps track of shuffled nodes
61 # Used for queue traversal
62 qprev = qnode
63 qcurr = qnext = None
64

65 # batch → batching within a socket
66 batch = qnode.batch
67 if batch == 0:
68 qnode.batch = ++batch
69

70 # Shuffler is decided at the end, so clear the value
71 qnode.is_shuffler = False
72 # No more batching to avoid starvation
73 if batch >= MAX_SHUFFLES:
74 return
75

76 while True: # Walking the linked list in sequence
77 qcurr = qprev.next
78 if qcurr is None:
79 break
80 if qcurr == lock.tail: # Do not shuffle if at the end
81 break
82

83 # NUMA-awareness policy: Group by socket ID
84 if qcurr.skt == qnode.skt: # Found one waiting on the same socket
85 if qprev.skt == qnode.skt: # No shuffling required
86 qcurr.batch = ++batch
87 qlast = qprev = qcurr
88

89 else: # Other socket waiters exist between qcurr and qlast
90 qnext = qcurr.next
91 if qnext is None:
92 break
93 # Move qcurr after qlast and point qprev.next to qnext
94 qcurr.batch = ++batch
95 qprev.next = qnext
96 qcurr.next = qlast.next
97 qlast.next = qcurr
98 qlast = qcurr # Update qlast to point to qcurr now
99 else: # Move on to the next qnode
100 qprev = qcurr
101

102 # Exit → 1) If the very next waiter can acquire the lock
103 # 2) A waiter is at the head of the waiting queue
104 if (vnext_waiter is True and lock.glock_first_byte == UNLOCK) or
105 (vnext_waiter is False and qnode.status == S_READY):
106 break
107

108 qlast.is_shuffler = True

Figure 4. Pseudo-code of the non-blocking version of ShflLocks and the shuffling mechanism.

Similar to CNA, we can also use a random generator to mit-

igate starvation. Now, S iterates over qnodes in the queue

while keeping track of the last shuffled qnode (qlast). While

traversing, S always marks the nodes that belong to its socket

by increasing the batch count. It only does pointer manipula-

tions when there are waiters between the last shuffled node

and the node belonging to S’s socket (lines 89–98). Finally,

S always exits the shuffling phase if either the TAS lock is

unlocked or S becomes the head of the queue (line 104–105).

Before exiting the shuffling phase, S assigns the next shuf-

fler: the last marked node (line 108). S can stop traversing

the queue for two more reasons: 1) if successors are absent

(line 78, 91), as S wants to avoid the locking delay because it

might soon acquire the lock; 2) if S reaches the queue tail, as

there might be waiters joining at the end of the tail, which it

cannot move (line 80).

Optimization. Our shuffling algorithm has unnecessary

pointer chasing when a newly selected shuffler, assigned

by the previous S, has to traverse the queue. We avoid this
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Figure 5. A running example of how a shuffler shuffles waiters

with the same socket ID and wakes them up. (a) t0 is the lock holder;

t1 is the shuffler and is traversing the queue. t2 is sleeping, but t1
wakes it up. (b) t2 becomes active, while t1 continues shuffling and

reaches t4, t1 first moves t4 after t2, and wakes up t4 to mitigate

the wakeup latency. (c) When t0 releases the lock, t1 acquires it; t2
and t4 are actively spinning for their turn; t4 is the shuffler.

issue by further encoding extra information about the qn-

ode where S stopped traversal in the next shuffler’s qnode

structure. This leads to traversing mostly from the near end

of the tail, thereby better utilizing the time of waiters.



1 + S_PARKED = 2 # Parked state (used by lock waiter for sleeping)
2 + S_SPINNING = 3 # Spinning state (used by shuffler for waking up)
3

4 def mutex_lock(lock):
5 ...
6 # Notify the very next waiter
7 - qnext.status = S_READY
8 + # Atomically SWAP the qnode status
9 + prev_status = SWAP(&qnext.status, S_READY)
10 + if node_pstate == S_PARKED: # Required for avoiding lost wakeup
11 + wake_up_task(qnext.task) # Explicitly wake up the very next waiter
12

13 def spin_until_very_next_waiter(lock, qprev, qcurr):
14 ...
15 if curr.status == S_READY:
16 return
17 + if task_timed_out(qcurr.task): # Running quota is up! Give up
18 + park_waiter(qcurr) # Will try to park myself
19

20 def shuffle_waiters(lock, qnode, next_flag):
21 ...
22 if batch >= MAX_SHUFFLINGS:
23 return
24 + SWAP(&qnode.status, S_SPINNING) # Don't sleep, will soon acquire the lock
25

26 while True:
27 ...
28 # NUMA-awareness and wakeup policy
29 if qcurr.skt == qnode.skt:
30 if qprev.skt == qnode.skt: # No shuffling required
31 + update_node_state(qcurr) # Disable sleeping
32 qnode.batch = ++batch
33 qlast = qcurr
34 qprev = qcurr
35

36 else:
37 + update_node_state(qcurr) # Disable sleeping
38 qnode.batch = ++batch
39 qprev.next = qnext
40

41 + def update_node_state(qnode):
42 + # If the task is waiting, then make it spinning
43 + if CAS(&qnode.status, S_WAITING, S_SPINNING):
44 + return
45 + # If the task is sleeping, then wake it up for spinning
46 + if CAS(&qnode.status, S_PARKED, S_SPINNING):
47 + wake_up_task(qnode.task) # Wakeup task (off the critical path)
48 +
49 + def park_waiter(qnode):
50 + # Park it when the task is waiting
51 + if CAS(&qnode.status, S_WAITING, S_PARKED):
52 + park_task(qnode.task)

Figure 6. The extra modification required to convert our non-

blocking version of ShflLock to a blocking one.

1 def mutex_lock(lock):
2 ...
3 + qnext = qnode.next # Try to get the successor before acquiring TAS
4 + if qnext is not None:
5 + if SWAP(&qnext.status, S_SPINING) == S_PARKED:
6 + wake_up_task(qnext.task)
7

8 # qnode is at the head of the queue; time to get the TAS lock
9 while True:
10 ...

Figure 7. An optimization for avoiding a waiter wakeup issue in

the critical path with an extra state update before the TAS lock.

4.2.2 Blocking Version: ShflLock
B

We augment ShflLock
NB

to incorporate an effective park-

ing/wakeup policy. Our lock algorithm departs from the

scalable queue-based blocking designs as we do not have a

separate parking list [14, 27, 40]. This allows us to save up to

16–20 bytes per lock compared to existing separate parking

list-based locks. We maintain both the active and passive

waiters in the same queue, and utilize the TAS lock for lock

stealing and shuffling to efficiently wake up parked waiters

off the critical path. ShflLock
B
avoids the lock-waiter pre-

emption by allowing the TAS lock to be unfair in the fast

path [12, 27] as well as keeping the head of the waiting queue

active, i.e., not scheduled out. In addition, we modify theMCS

protocol to support waiter parking and wakeup. We further

extend our shuffling protocol to wake up the nearby sleeping

waiters while shuffling the queue for NUMA-awareness in

both under- and over-subscribed cases (Figure 5). To support

efficient parking/wakeup, we extend our non-blocking ver-

sion with two more states: 1) parked (S_PARKED), in which a

waiter is scheduled out for handling core over-subscription

and 2) spinning (S_SPINNING), in which a shuffled waiter is

always spinning for mitigating the convoy effect.

Figure 6 shows the modifications on top of ShflLock
NB

.

While spinning locally on its status, a waiter t checks if

the time quota is up (line 17). In that case, t tries to atom-

ically change its qnode status from S_WAITING to S_PARKED

(line 51). On success, t parks itself out (line 52); otherwise,

t goes back to spinning. In the shuffling phase, a shuffler

S also wakes up the shuffled sleeping waiters (lines 31, 37).

Note that this is a best effort strategy, in which an S first

tries to atomically CAS the qnode’s status from S_WAITING to

S_SPINNING, hoping that the waiter is still waiting locally;

if the operation fails, then S does another explicit CAS from

S_PARKED to S_SPINNING and wakes up the sleeping waiter if

successful (line 47). The last notable change to the algorithm

is notifying the head of the queue. There is a possibility that

the very next waiter might be sleeping. We atomically swap

the qnext’s state to S_READY (line 9) and wake up the waiter

at the head of the queue if the return value of the atomic

SWAP operation is S_PARKED (line 11).

Optimizations. Our first optimization is to enable lock

stealing by not setting the second byte when the queue be-

gins. The reason is that waking up a waiter ranges from

1µs–10ms, which adds overhead in the acquire phase. The

second optimization regards the waiter wakeup. Our current

design leads to waking up the queue head inside the critical

section, even though it is rare (see §6). As shown in Fig-

ure 7, we explicitly set the successor status to S_SPINNING

and wake it up if parked. This approach further removes

the rare occurrence of the waiter preemption problem at the

cost of an extra atomic operation, which is acceptable, as the

atomic operation is only between two qnodes. It is not a part

of the critical section, as other joining threads can steal the

lock (TAS) to ensure the forward progress of the system.

4.2.3 Readers-Writer Blocking ShflLock

Linux uses a readers-writer spinlock [31], which combines a

readers indicator with a queue-based lock. This lock queues

waiting readers and writers to avoid cache-line contention

and bouncing. We use a similar design on top of our block-

ing ShflLock. Thus, our readers-writer lock inherently be-

comes a blocking lock, and at most only one reader or a

writer can spin to acquire, while others spin locally. Our lock

design provides only long-term fairness due to the NUMA-

awareness of the ShflLock. This is acceptable because even

the Linux’s rwsem is writer-preferred to enhance throughput



Kernel space

Locks Replaced Selection criteria

ShflLocks All –

CNA [16] qspinlock Compact NUMA-aware lock (NB)

CST [27] mmap_sem / i_rwsem / †
Hierarchical + dynamic allocation (B)

Cohort [18] s_vfs_rename_mutex †
Hierarchical + static allocation (NB)

Userspace

Locks Selection criteria

MCS [37] Queue-based lock (NB)

HMCS [8] Representative cohort lock (NB)

CNA [16] Compact version of NUMA-aware MCS (NB)

MCSTP [23] Preemption adaptive MCS for over-subscription (NB)

Pthread Stock version used by everyone (B)

Mutexee [19] Optimized version of Pthread (B)

Malthusian [14] Culls extra thread deterministically (B)

B: Blocking; NB: Non-blocking † Both CST and Cohort replace all three locks.

Table 2. Locks evaluated in both the kernel space and the userspace.

In the kernel space, we replace all locks with ShflLocks. We use

LD_PRELOAD to replace all the mutex-based locks in the userspace.

over fairness [30, 46], similar to prior work [6]. Note that the

shuffler only moves writers in the wait queue because all the

contiguous readers can enter the critical section together,

irrespective of NUMA socket.

Details. We augment a ShflLock, henceforth called wlock,

with a read/write counter, which encodes: a readers count

(Rcount), a writer waiting bit (WWb) indicating if a writer is

waiting to acquire the lock, and a writer byte (WB), indicating

if a writer is currently holding the lock. A writer enters the

critical section on successfully setting WB from 0 to 1; other-

wise, it enqueues itself to acquire the underlying blocking

lock (wlock). After acquiring the wlock, the writer sets the

waiting bit (WWb) to 1 to prohibit new readers from entering

the critical section and waits for existing readers to leave.

Once readers leave, the writer atomically resets WWb to 0 and

sets WB to 1, releases wlock, and then enters the critical sec-

tion. In the writer unlock phase, a writer resets WB to 0. A

reader first atomically increments Rcount and enters the crit-

ical section if both WB and WWb are 0. If non-zero, the reader

first decreases Rcount and starts acquiring wlock. Once it

holds wlock, it first increments the Rcount to prevent writers

from entering the critical section and waits for the existing

writer to exit. When WB is 0, the reader enters the critical

section after releasing wlock. In the unlock phase, a reader

atomically decreases Rcount.

5 Implementation

We implement all ShflLocks in the Linux kernel v4.19-rc4

and entirely replace mutex and rwsem with ours. Our replace-

ment results in adding 459 and 557 lines of code (LoC) for

mutex and rwsem, respectively. We add our shuffling phase

to the qspinlock in 150 LoC, without increasing the lock

size. We have also tested ShflLocks with locktorture. Our

code is publicly availabe at https://github.com/sslab-gatech/
shfllock.

Lock type Workload Lock: Usage

Non-blocking

MWRL [39] rename seqlock: Rename files within a directory

lock1 [2] files_struct.file_lock: fd allocation / fcntl

Blocking MWRM [39] sb->s_vfs_rename_mutex: Rename a file across directory

RW blocking

MWCM [39] inode->i_rwsem: Create files in the directory (writer)

MRDM [39] inode->i_rwsem: Enumerate files in the directory (readers)

Table 3. Lock usage in various micro-benchmarks [2, 39].
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Figure 8. Impact of non-blocking locks on the scalability of micro-

benchmarks [2, 39]. Refer to Table 3 for lock usage. Here, Stock

refers to the default spinlock.

6 Evaluation

We evaluate ShflLocks by answering three questions:

Q1. Howdo ShflLocks, implemented in the kernel, impact

micro-benchmarks (§6.1) and real applications (§6.2)?

Q2. How does each design decision affect ShflLocks per-

formance and how fair are ShflLocks (§6.3)?

Q3. How do userspace ShflLocks impact applications’

performance and memory footprint? (§6.4)

Evaluation setup. We use micro-benchmarks that stress a

single lock [2, 39], and three workloads that heavily stress

several kernel subsystems [4, 50]. We also use a hash-table

nano-benchmark [48] to break down the performance char-

acteristics of ShflLocks. Table 2 lists all the evaluated locks

and the selection criteria. We evaluate on an 8-socket, 192-

core machine with Intel Xeon E7-8890 v4 (hyperthreading

disabled). We use tmpfs to minimize file system overhead.

6.1 ShflLock Performance Comparison

We evaluate the performance of all ShflLocks using a set

of micro-benchmarks [2, 39]. Each micro-benchmark instan-

tiates a set of threads and pins them to cores. These threads

contend on a single lock while performing specific tasks

(Table 3) for 30 seconds. We pin two threads on each core in

the over-subscribed scenario for blocking locks.

Non-blocking ShflLock. Figure 8 shows that both CNA

and ShflLock outperform the Linux version (Stock) by 2.8×

and 2× on MWRL and lock1, respectively, while maintaining

the same throughput under lower contention, e.g., within a

single socket. Similar to ShflLock, CNA maintains NUMA-

awareness by using the lock holder to physically split the

waiting queue into two, one for local threads and the other

for remote threads. Meanwhile, ShflLock uses lock waiters

to shuffle waiters around, mostly off the critical path.

Blocking ShflLock. We compare ShflLock with Linux

mutex and rwsem (Stock), Cohort non-blocking lock, and

CST lock (Table 2). We test these locks in both under- and

https://github.com/sslab-gatech/shfllock
https://github.com/sslab-gatech/shfllock
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Figure 9. Impact of blocking locks on the scalability of micro-benchmarks with up to 2× over-subscription (384 threads: we pin two threads

on each core). Cohort and CST are the non-blocking and blocking hierarchical locks, respectively. Refer to Table 3 for lock usage.

over-subscribed cases, i.e., up to 384 threads by pinning two

threads on a core in a round-robin manner. Figure 9 (a) shows

the results for the MWRM benchmark, which renames files

across directories. MWRM first pre-allocates a set of empty

files in per-thread directories; then, each thread moves a file

from its directory to a shared directory, which stresses the

super-block’s mutex (Table 3). ShflLock maintains the best

throughput in both under- and over-subscribed scenarios

and is 1.8× faster than both CST and Stock. The stock suffers

from cache-line bouncing at high core count but maintains

the throughput in the over-subscribed case. Cohort is a non-

blocking lock, which performs well up to the total number

of cores (192 threads), but significantly degrades MWRM’s

throughput in the over-subscribed case (384 threads), as

waiters waste CPU cycles. CST does not scale because it dy-

namically allocates its socket structure before each critical

section, which results in excessive allocations with elongated

critical section length. In contrast, Cohort pre-allocates its

socket structure, and does not extend the critical section.

Readers-Writer Blocking ShflLock. Figure 9 (b) shows

the impact of ShflLock when stressing the writer lock of

rwsem. We use theMWCMbenchmark, in which each worker

creates 4KB files in a shared directory to stress inode alloca-

tion. We observe that ShflLock maintains the best through-

put at all core counts, due to its ability to better adapt to

the workload. For example, ShflLock is 1.8–2× faster than

hierarchical locks within a socket and 1.5× faster than Stock

at 192 threads. Cohort can only scale up to four cores (almost

55% slower than ShflLock) because memory allocation be-

comes an issue as the inode size increases by 3.4×. Meanwhile,

CST avoids this scenario, as it only allocates the memory for

one socket initially, but its performance only scales to reach

that of ShflLock after 2 NUMA nodes.

Figure 9 (c) shows the impact of ShflLock when stress-

ing the readers side of the rwsem. We use MRDM, in which

each thread enumerates files in a directory. We also include

a recently proposed approach, called BRAVO [15], that tries to

mitigate the centralized reader overhead by using a global

readers table. We observe that both hierarchical locks are

faster than ShflLock and rwsem because of their per-socket

readers indicator, which localizes the contention within a

socket. ShflLock is still faster than stock rwsem by 1.2–1.5×

because the stock version suffers from the spurious sleeping

of waiters, which results in extra cache-line contention on

the reader indicator, thereby impacting the throughput. We

also observe that the BRAVO approach improves the through-

put for both Stock and ShflLock up to 2.3× compared to

Cohort and CST locks at 192 threads. However, due to the

extra cache-line contention in the stock version, ShflLock-

BRAVO still outperforms Stock-BRAVO by 1.6× at 384 threads.

6.2 Improving Application Performance

We evaluate three applications that extensively stress var-

ious subsystems of the Linux kernel. Figure 10 reports the

throughput of applications and the memory used by locks,

which are mostly blocking and are present in several data

structures such as inodes, task structures, and memory map-

pings. Table 2 shows the locks modified for the evaluation.

Note that CNA only modifies the spinlock, but does not affect

the size of blocking locks.

AFL [50], a fuzzer, is an embarrassingly parallel workload

that heavily uses fork() to execute test cases and scan direc-

tories created by the fuzzing instances. AFL suffers from the

following overheads: process forking, repeatedly creating

and unlinking files in a private directory, and scanning other

instances’ directories [49]. In addition, AFL suffers from the

gettimeofday() syscall, as each instance issues this syscall

to log information. Figure 10 (a) shows AFL throughput and

memory usage with various locks. We observe that all the

existing versions of NUMA-aware locks improve through-

put compared with the stock version. For instance, CNA

decreases the qspinlock overhead due to process forking

and gettimeofday() from 48% to 32%. Meanwhile, both CST

and Cohort locks improve the file system performance, as

these locks scale as well as ShflLocks. However, their large

memory footprint starts stressing the memory allocator at

higher core count, as the bottleneck completely shifts to pro-

cess forking (30%). Finally, ShflLocks improve performance

on two fronts: they improve throughput by 1.2–1.6× while

reducing the lock overhead by 35.4–95.8% at 192 threads. The

significant overhead now comes from the gettimeofday()

syscall, as perf shows almost 20% of CPU cycles.

Exim [4] is a process-intensive workload that forks a new

process for every connection. Each connection then forks

twice to handle messages and file system operations [39],

which heavily over-subscribe the system. Exim creates about

3× copies for each message and heavily stresses the kernel

in three subsystems: memory management, file systems, and
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Figure 10. Impact of locks on application scalability and on memory footprint, while running three applications with ShflLocks, Linux

stock version (Stock), CNA, CST, and Cohort. Refer to Table 2 for specific changes. ShflLock reduces the memory footprint because of the

blocking locks that are embedded in inodes, task structure, and memory management structures.

network connections. On average, about 50% of the time is

spent in the process forking/exiting and interrupts. Figure 10

(b) shows Exim throughput and memory usage with vari-

ous locks. Both ShflLocks and CNA improve throughput

as they decrease the CPU idle time by 50% compared with

CST, Cohort, and Stock while improving the useful work

by ≈2%. The improvement is a result of a decrease in lock

contention by 10% (relative to Stock) in the cleaning up of re-

verse mappings [36]. The throughput of the CST and Cohort

locks decreases because these locks stress the memory allo-

cator (see §3), as the benchmark generates about 8M files in

20 secs. In summary, ShflLocks improve the throughput by

1.5× compared with hierarchical locks as well as decrease the

memory footprint by 40.8–92.9% among all existing versions.

Metis is an in-memorymap-reduce framework, representing

a page-fault-intensive workload that stresses a single lock

in the kernel: the reader side of the mmap_sem. Figure 10 (c)

shows that both Cohort and CST locks outperform all the

centralized counter-based locks because of localizing the

contention within a socket but at the cost of ≈80× extra

memory. However, our readers-writer blocking lock is still

faster than Stock because the stock version also encodes

the sleeping waiters in its count indicator, as it has almost

3.4× higher atomic instructions compared with ShflLock

when measured with perf [35]. This workload also shows the

efficiency of our under-subscribed scenario. Compared to

rwsem, that has 33% more idle time due to its naive parking

strategy, ShflLock’s readers do not park themselves. This

results in less idle time (1.2%) and higher throughput (2.4×)

than the original rwsem.

Summary. Figure 10 shows the impact of scheduling inter-

action, the overhead of memory allocation with respect to

locks in both under- and over-subscribed cases, with varying

contention levels. Our holistic design of ShflLocks accom-

modates NUMA-awareness at high core count and shows

that memory overhead (whether dynamic or static) heavily

influences the scalability of applications. Compared to all

locks, ShflLocks reduce the memory footprint overhead up

to 98.8% and 35.4% when compared with the hierarchical

locks, and and Stock, respectively.

6.3 Performance Breakdown

We now do an in-depth analysis of ShflLocks using a hash-

table benchmark in the kernel [48]. A global lock guards

the hash table. For ShflLock
NB

and ShflLock
B
, we use 1%

writes, and for ShflLock
RW

(readers-writer blocking lock),

we generate 1% and 50% writes on the hash table. Figure 11

shows the results as well as the factor analysis of ShflLocks.

Non-blocking ShflLock
NB

. Figure 11 shows (a) through-

put and (b) fairness.We calculate the fairness factor described

by Dice et al. [16], in which we sort the number of operations

performed by each thread, and divide the sum of the second

half of threads’ operations (sorted in increasing order) by

the total number of operations. Thus, the resulting fairness

factor is a number between 0.5 and 1, with a strictly fair

lock yielding a factor of 0.5 and an unfair lock yielding a

factor close to 1. We observe that both CNA and ShflLock

are the best performing, while the performance of Cohort

locks is affected because of bloating of the critical section in

the case of one socket. Although NUMA-aware locks impact

the fairness of locks, they still maintain long-term fairness,

as the fairness factor is close to 0.5.

Figure 11 (e) shows the improvement at 192 threads due

to the various optimizations in ShflLocks. Here, Base rep-

resents no shuffling, which behaves as the NUMA-oblivious

spinlock. +Shuffler represents a version of ShflLockswhere

only the very first waiter shuffles, but doesn’t pass the role to

other threads. This version improves the throughput by 16%

over Base. +Shufflers represents the algorithm we describe

in Figure 4, in which a shuffler passes the role to any waiter

in the local socket. This approach results in almost a 10% im-

provement over +Shuffler. Finally, the +qlast optimization

avoids the unnecessary pointer chasing done by the shuffler

to determine where to insert a rellocated qnode by saving

the last qnode of the threads with the same socket ID. This

optimization improves throughput by 30% .
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Figure 11. Impact on throughput and long-term fairness of non-

blocking and blocking locks on the hash-table benchmark. For

blocking locks, we over-subscribe the system by 4×. We also include

the factor analysis of several phases introduced by ShflLock
NB

,

and the number of wakeups in the critical path for ShflLock
B
.

Later, we show the impact on throughput with centralized readers-

writer locks: Stock and ShflLock
RW

for 1% and 50% writes up to

4× over-subscription.

Blocking ShflLock
B
. Figure 11 shows (c) throughput, and

(d) the fairness factor for ShflLock
B
. We see that ShflLock

maintains the best throughput even up to 4× over-subscription

because it aggressively steals the lock in the over-subscribed

case. Our lock stealing is inherently NUMA-aware because

most of the remote waiters join the queue; meanwhile, the

local active waiters only steal the lock if the very-next waiter

(shuffler) is busy waking up its successor. We further con-

firm this result by only allowing the stealing from the local

NUMA-socket, which shows the same throughput, as shown

by ShflLock (NUMA) in the figure. Meanwhile, even in the

under-subscribed scenario, we observe that the fairness fac-

tor reaches up to 0.6 because of lock stealing but does not

starve waiters (d). Besides, the shuffler proactively wakes up

threads that will acquire the lock soon, which completely

removes the waking-up overhead from the critical path, even

in the over-subscribed scenario (refer to Figure 11 (f)).

Blocking ShflLock
RW

. Figure 11 ((g) and (h)) show that

the ShflLock
RW

has higher throughput than the stock ver-

sion by 8.1× and 3.7× for 1% and 50% writes, respectively.

This happens because the stock version is very inefficient,

as most of the threads are blocked, resulting in idling of

the CPU (99%). Meanwhile, ShflLock
RW

maintains consis-

tent performance regardless of the contention on the lock,

even further batching readers together at a higher count to

maintain good throughput. One point to note is that in the

case of over-subscription, ShflLock
RW

aggressively batches

readers and writers, which slightly improves the throughput.

6.4 Performance With Userspace ShflLock

We now evaluate ShflLocks on three benchmarks: LevelDB

for high contention, Streamcluster for the trylock interface,

and Dedup for memory allocation [21]. We integrate both

ShflLock and CNA into LiTL [22] for evaluation.
3
We use

a set of blocking and non-blocking locks that have the best

performance for the selected workloads (refer to Table 2).

LevelDB is an open-source key-value store [20]. We use

the readrandom benchmark that contends on the global data-

base lock. Figure 12 (a) and (b) show the throughput with

non-blocking and blocking locks, respectively, with up to

4× over-subscription for the blocking ones after running for

60 seconds. We keep Pthread as a reference for the compari-

son. We find that ShflLock is almost as fast as the existing

NUMA-aware locks with increasing core count and is 2.4×

faster than MCS locks with 192 threads. We also observe

that Pthread only scales up to eight threads because it starts

parking threads. The throughput of blocking locks is better

than non-blocking ones because fewer threads are contend-

ing on locks. ShflLock
B
outperforms others by 1.7–3.8× at

192 threads. Moreover, we see that ShflLock maintains al-

most the same throughput even at 768 threads, and achieves

1.6–12.5× higher throughput. This happens for two reasons:

efficient waking up of waiters and aggressive lock stealing,

as there are still active waiters that acquire the lock.

Streamcluster is a data mining workload [1], which uses a

custom barrier implementation to synchronize threads be-

tween the different phases of the application. The barrier

implementation uses a mix of trylock and lock operations,

as well as condition variables, which amount to almost 30%

of the execution time [21]. Figure 12 (c) shows the execu-

tion time of streamcluster. Guerraoui et al. pointed out that

the contention-hardened trylock interface results in better

execution of this workload, which we observe for HMCS as

well as for MCSTP (slightly better than MCS and CNA). How-

ever, we find that ShflLocks has almost similar execution

time as that of HMCS and is 1.3–4.4× faster than other locks.

This happens because of our main design choice: decoupling

the lock state from the waiting queue. Even though CNA is

3
Similar to Pthread, we use futex() system call to implement ShflLock

B
.

The waiter spins for a constant duration and then parks itself.
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NUMA-aware, its performance is similar to MCS because the

lock state and the queue tail are coupled. On further anal-

ysis, we find that queue-based locks, such as HMCS, CNA,

and MCS, spend 4× extra time (failed and succeeded trylock

time) and 15× excessive trylock operations than ShflLock,

which improves ShflLock’s throughout over MCS and CNA.

Despite HMCS spends extra time in the trylock operation,

it spends 4× less time in the lock operation than ShflLock

because waiters statically partition the list, which results

in the most efficient NUMA-aware lock. In summary, tail

and state decoupling provides a window of opportunity that

allows the trylock operation to succeed.

Dedup represents an enterprise storageworkload [1], which

allocates up to 266K locks throughout its lifetime and heavily

stresses the memory allocator as well as creates almost 3× the

number of threads for several application phases. Figure 13

shows (a) the number of jobs per hour and (b) the ratio of the

overall memory allocated during the application’s lifetime

with respect to Pthread. We observe that the benchmark

is not scalable after 48 cores (2 sockets) because of huge

over-subscription and memory allocation. Both versions of

ShflLocks have the same scalability as that of a light lock,

as Pthread, and the blocking version is even 5% faster at 48

cores by avoiding the lock-waiter preemption.

ShflLock adds no memory overhead over Pthread, but

other queue-based lock add the overhead of per-thread queue

nodes allocated on the heap. While these locks could theo-

retically allocate queue nodes on the stack, it would require

application-wide changes to the Dedup code and Pthread

API; ShflLock’s queue node design is easier to deploy. In

addition, the hierarchical locks also allocate per-socket struc-

tures. This leads to more than 90% of the time being spent in

memory allocations. For instance, the ratio of extra memory

allocation is 58–87× higher for existing queue-based locks.

7 Discussion

Policies. Our shuffling mechanism opens new opportuni-

ties to implement different policies based on the hardware

behavior or the requirements of the application. For example,

we can devise policies to support non-inclusive caches [41]

or a multi-level NUMA hierarchy [43]. In this case, the shuf-

fler optimizes the waiting list according to the NUMA node,

but it also keeps track of the number of hops. In addition,

shuffling can also be used to avoid the priority inversion is-

sue [28] or to devise approaches for applications that require

occupancy-aware scheduling, (i.e., prioritize lock-acquire

based on the time spent inside the critical section). In addi-

tion, shuffling can also be beneficial in designing an adaptive

readers-writer lock, in which a waiter switches among cen-

tralized, per-socket or per-CPU reader indicators, depending

on workload and thread contention.

8 Conclusion

Locks are still the preferred style of synchronization. How-

ever, a considerable discrepancy exists in practice and design.

We classify such issues into four dominating factors that im-

pact the performance and scalability of lock algorithms and

find that none of the locks meets all the required criteria.

To that end, we propose a new technique, called shuffling,
that enables the decoupling of lock design from policy en-

forcement, such as NUMA-awareness or parking/wakeup

strategies. Moreover, these policies are enforced entirely off

the critical path by the waiters. We then propose a family of

locking protocols, called ShflLocks, that respects all of the

factors and shows that we can indeed achieve performance

without additional memory overheads.
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