
Finding Semantic Bugs in File Systems
with an Extensible Fuzzing Framework
Seulbae Kim, Meng Xu*, Sanidhya Kashyap*, Jungyeon Yoon, Wen Xu, Taesoo Kim

* On the job market

Fuzzing F2FS in Linux v5.0-rc7 for crash consistency
Result at the end of the talk!

Demonstration

2

Question: Can file systems be bug-free?

3

Can file systems be bug-free?

● Code base is massive

4

● Code base is massive

Can file systems be bug-free? Not likely

5

39 KLoC 98 KLoC 94 KLoC

+ common VFS layer (53 KLoC)!

Can file systems be bug-free? Not likely

● Code base is massive and evolving

39 KLoC 98 KLoC 94 KLoC

6

Can file systems be bug-free? Not likely

● Code base is massive and evolving

7

100+ ext4, Btrfs, XFS bugs were reported in 2019

39 KLoC 98 KLoC 94 KLoC

File system bugs are devastating

● Bugs and effects

8

Crash consistency bug

Specification violation

Logic bug

Memory error

Data loss / corruption!

Unexpected runtime error!

!

DoS / Privilege escalation!

Incorrect result

Previous approaches to find FS bugs

9

Regression
Testing

Model
Checking

Verified
File System

Fuzzing

Linux Test Project
xfstests

fsck

FSCQ
Yggdrasil
DFSCQ
SFSCQ

(SOSP’15)
(OSDI’16)
(SOSP’17)
(OSDI’18)

FiSC
eXplode
Juxta
Ferrite
B3

(OSDI’04)
(OSDI’06)
(SOSP’15)
(ASPLOS’16)
(OSDI’18)

Syzkaller
kAFL
Janus

(Google)
(Security’17)
(S&P’19)

Previous approaches to find FS bugs

10

Regression
Testing

Model
Checking

Verified
File System

Fuzzing

Linux Test Project
xfstests

fsck

Only test
known cases

FSCQ
Yggdrasil
DFSCQ
SFSCQ

(SOSP’15)
(OSDI’16)
(SOSP’17)
(OSDI’18)

FiSC
eXplode
Juxta
Ferrite
B3

(OSDI’04)
(OSDI’06)
(SOSP’15)
(ASPLOS’16)
(OSDI’18)

Syzkaller
kAFL
Janus

(Google)
(Security’17)
(S&P’19)

Previous approaches to find FS bugs

11

Regression
Testing

Model
Checking

Verified
File System

Fuzzing

Linux Test Project
xfstests

fsck

Only test
known cases

High false positive
Limited to known

test cases

FSCQ
Yggdrasil
DFSCQ
SFSCQ

(SOSP’15)
(OSDI’16)
(SOSP’17)
(OSDI’18)

FiSC
eXplode
Juxta
Ferrite
B3

(OSDI’04)
(OSDI’06)
(SOSP’15)
(ASPLOS’16)
(OSDI’18)

Syzkaller
kAFL
Janus

(Google)
(Security’17)
(S&P’19)

Previous approaches to find FS bugs

12

Regression
Testing

Model
Checking

Verified
File System

Fuzzing

Linux Test Project
xfstests

fsck

Only test
known cases

High false positive
Limited to known

test cases

Large unverified parts
(buggy)

FSCQ
Yggdrasil
DFSCQ
SFSCQ

(SOSP’15)
(OSDI’16)
(SOSP’17)
(OSDI’18)

FiSC
eXplode
Juxta
Ferrite
B3

(OSDI’04)
(OSDI’06)
(SOSP’15)
(ASPLOS’16)
(OSDI’18)

Syzkaller
kAFL
Janus

(Google)
(Security’17)
(S&P’19)

Previous approaches to find FS bugs

13

Regression
Testing

Model
Checking

Verified
File System

Fuzzing

Linux Test Project
xfstests

fsck

FiSC
eXplode
Juxta
Ferrite
B3

Only test
known cases

High false positive
Limited to known

test cases

Large unverified parts
(buggy)

?

(OSDI’04)
(OSDI’06)
(SOSP’15)
(ASPLOS’16)
(OSDI’18)

FSCQ
Yggdrasil
DFSCQ
SFSCQ

(SOSP’15)
(OSDI’16)
(SOSP’17)
(OSDI’18)

FiSC
eXplode
Juxta
Ferrite
B3

(OSDI’04)
(OSDI’06)
(SOSP’15)
(ASPLOS’16)
(OSDI’18)

Syzkaller
kAFL
Janus

(Google)
(Security’17)
(S&P’19)

● Feedback-driven fuzzing is a complementary solution
○ Produces effective test cases on-the-fly

○ Proven to be scalable in practice

○
● Known file system fuzzers

○ VM-based kernel fuzzers
■ kAFL (Security’17), Syzkaller (Google)

○ LibOS-based fuzzer
■ Janus (S&P’19) - our previous work!

Our approach: Fuzzing file systems

14

🙂

🙂

● Feedback-driven fuzzing is a complementary solution
○ Produces effective test cases on-the-fly

○ Proven to be scalable in practice

○
● Known file system fuzzers

○ VM-based kernel fuzzers
■ kAFL (Security’17), Syzkaller (Google)

○ LibOS-based fuzzer
■ Janus (S&P’19) - our previous work!

Our approach: Fuzzing file systems

15

🙂

🙂 Janus discovered 90 memory-safety bugs

from file systems in 2018 🙂

● Feedback-driven fuzzing is a complementary solution
○ Produces effective test cases on-the-fly

○ Proven to be scalable in practice

○
● Known file system fuzzers

○ VM-based kernel fuzzers
■ kAFL (Security’17), Syzkaller (Google)

○ LibOS-based fuzzer
■ Janus (S&P’19) - our previous work!

Our approach: Fuzzing file systems

16

🙂

🙂 Janus discovered 90 memory-safety bugs

from file systems in 2018 🙂

However, existing file system fuzzers
focus only on memory-safety bugs 🙁

File system bugs in various flavors

● Memory-safety bugs

(focus of existing fuzzers)

17

12 %
(219)

88 %
(1786)

*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.”
FAST’13

File system bugs in various flavors

● Memory-safety bugs

(focus of existing fuzzers)

● Semantic bugs
○ Crash consistency bug

○ Specification violation

○ Logic bug

○ ...

18*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.”
FAST’13

12 %
(219)

88 %
(1786)

File system bugs in various flavors

● Memory-safety bugs

(focus of existing fuzzers)

● Semantic bugs
○ Crash consistency bug

○ Specification violation

○ Logic bug

○ ...

19*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.”
FAST’13

12 %
(219)

88 %
(1786)

We’d like to take advantage of fuzzing
for finding semantic bugs

Challenge: Semantic bugs are harder to detect

● Key idea in fuzzing: “Crashes” are feedback to fuzzers

20

FUZZER
Target

program

Fuzzing for memory-safety bugs

Challenge: Semantic bugs are harder to detect

● Key idea in fuzzing: “Crashes” are feedback to fuzzers

21

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

Challenge: Semantic bugs are harder to detect

● Key idea in fuzzing: “Crashes” are feedback to fuzzers

22

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

if BUG, crash

Challenge: Semantic bugs are harder to detect

● Key idea in fuzzing: “Crashes” are feedback to fuzzers

23

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

feedback
(e.g., SIGSEGV)

Detected!

if BUG, crash

Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

24

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

feedback
(e.g., SIGSEGV)

FUZZER
Target

program

if BUG, crash

Fuzzing for semantic bugs
(e.g., spec. violation)

Detected!

Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

25

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

feedback
(e.g., SIGSEGV)

FUZZER
Target

program

input

if BUG, crash

Fuzzing for semantic bugs
(e.g., spec. violation)

Detected!

Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

26

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

feedback
(e.g., SIGSEGV)

FUZZER
Target

program

input

Fuzzing for semantic bugs
(e.g., spec. violation)

if BUG, function returns
a wrong value internally

if BUG, crash

Detected!

?

Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

27

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

if BUG, crashfeedback
(e.g., SIGSEGV)

FUZZER
Target

program

Fuzzing for semantic bugs
(e.g., spec. violation)

input

if BUG, function returns
a wrong value internally

Detected! Not detected 🙁

?

Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

28

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

if BUG, crashfeedback
(e.g., SIGSEGV)

FUZZER
Target

program

Fuzzing for semantic bugs
(e.g., spec. violation)

input

!

Detected!

Detected 🙂

Checker

if BUG, function returns
a wrong value internally

feedback

Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

29

FUZZER
Target

program

input

Fuzzing for memory-safety bugs

if BUG, crashfeedback
(e.g., SIGSEGV)

FUZZER
Target

program

Fuzzing for semantic bugs
(e.g., spec. violation)

input

!

Detected!

Detected :)

Retval
checker

if BUG, function returns
a wrong value internally

signal
Accurate checker for each bug type
needs to be integrated to fuzzing!

Proposed solution: Hydra
A turnkey solution for
file system fuzzing

30

HYDRA overview (high-level)

31

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

HYDRA overview - Input generator

32

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

AFL variant*

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

HYDRA overview - Test case

33

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

AFL variant*

FS image
+

System calls

HYDRA overview - LibOS-based test executor

34

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

Mount img,
exec syscallsAFL variant*

FS image
+

System calls

HYDRA overview - Checker

35

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

FS image
+

System calls
Check for bugAFL variant*

Mount img,
exec syscalls

HYDRA overview - Feedback

36

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

FS image
+

System calls
Check for bugAFL variant*

Mount img,
exec syscalls

- FS-specific code coverage
- Checker-defined signal

Hydra framework takes care of

37

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

- Automated input space exploration
- Test execution
- Incorporation of checkers, ...

- Develop and
plug-in a bug checker

In the meantime.. a tester can

38

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

- Automated input space exploration
- Test execution
- Incorporation of checkers, ...

- Develop and plug-in
a specialized bug checker

Separation of concern!

39

Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

- Develop and plug-in
a specialized bug checker

- Automated input space exploration
- Test execution
- Incorporation of checkers, ...

Developers may focus solely on describing the
bugs of their own interests

● Through pluggable checkers

Hydra is extensible!

40

Input generator Test case LibOS-based
Test Executor

BUG!

Feedback

Crash consistency bug

Consistency checker
e.g., SymC3

Spec. Violation

POSIX checker
e.g., SibylFS

Logic bug

Built-in FS checks

Memory safety bug

Address sanitizer
e.g., KASAN

In-house developed checker

Existing oracle, with few lines for integration

In-kernel checker, used as is

● Through pluggable checkers

Hydra is extensible!

41

Input generator Test case LibOS-based
Test Executor

BUG!

Feedback

Crash consistency bug

Consistency checker
e.g., SymC3

Spec. Violation

POSIX checker
e.g., SibylFS

Logic bug

Built-in FS checks

Memory safety bug

Address sanitizer
e.g., KASAN

In-house developed checker

Existing oracle, with few lines for integration

In-kernel checker, used as is

Readily extensible to other types of bugs by
plugging in relevant checkers

Hydra in action

42

Finding crash consistency bug
utilizing SymC3 checker with Hydra

Hydra in action - Crash consistency testing

● SymC3: Symbolically evaluate crashing states
(i.e., keeping in-memory and on-disk states, like real FS implementation)

○ Input : a list of system calls, initial state

○ Output: a list of legitimate post-crash states

43

Hydra in action - Crash consistency testing

● SymC3: Symbolically evaluate crashing states
(i.e., keeping in-memory and on-disk states, like real FS implementation)

○ Input : a list of system calls, initial state

○ Output: a list of legitimate post-crash states

● Checking errors:

44

Test
case

Hydra in action - Crash consistency testing

● SymC3: Symbolically evaluate crashing states
(i.e., keeping in-memory and on-disk states, like real FS implementation)

○ Input : a list of system calls, initial state

○ Output: a list of legitimate post-crash states

● Checking errors:

45

Test
case

LibOS
Executor

execute
& crash

𝛾: Crash-recovered
 concrete state

Hydra in action - Crash consistency testing

● SymC3: Symbolically evaluate crashing states
(i.e., keeping in-memory and on-disk states, like real FS implementation)

○ Input : a list of system calls, initial state

○ Output: a list of legitimate post-crash states

● Checking errors:

46

Test
case

LibOS
Executor

SymC3

(states contain symbols)

execute
& crash

emulate 𝚺: Set of legit. states
 {state1, state2, …}

𝛾: Crash-recovered
 concrete state

Hydra in action - Crash consistency testing

● SymC3: Symbolically evaluate crashing states
(i.e., keeping in-memory and on-disk states, like real FS implementation)

○ Input : a list of system calls, initial state

○ Output: a list of legitimate post-crash states

● Checking errors:

47

Test
case

LibOS
Executor

SymC3
𝚺: Set of legit. states
 {state1, state2, …}

𝛾: Crash-recovered
 concrete state

(states contain symbols)

𝛾 ∈ 𝚺 ?

execute
& crash

emulate

Not bug

Bug

True

False

Hydra in action - Fuzzer-generated test case

● Simplest test case (but it was a real bug in F2FS!)

48

1 mkdir “A” 0775
2 sync
3 chmod “A” 0600
4 fsync “A”

Hydra in action - Initial emulator states

49

1 mkdir “A” 0775
2 sync
3 chmod “A” 0600
4 fsync “A”

Tree

i0 .

In-memory

i0.dents=[.]

On-disk

i0.dents=[.]

i0 .

Snapshots

Initial states in the
emulator

Store possible
inode hierarchy

Hydra in action - Emulation of test case

50

Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

On-disk

i0.dents=[.]

Snapshots

new inode created
in memory

Store new
tree-snapshot

1 mkdir “A” 0775
2 sync
3 chmod “A” 0600
4 fsync “A”

Hydra in action - Emulation of test case

51

Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

Snapshots

All metadata flushed to disk

1 mkdir “A” 0775
2 sync
3 chmod “A” 0600
4 fsync “A”

Hydra in action - Emulation of test case

52

Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775,0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

Snapshots

1 mkdir “A” 0775
2 sync
3 chmod “A” 0600
4 fsync “A”

New metadata is written
History of metadata changes

is maintained

Hydra in action - Emulation of test case

53

Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Snapshots

1 mkdir “A” 0775
2 sync
3 chmod “A” 0600
4 fsync “A”

i1’s metadata flushed to disk

Hydra in action - End of test case emulation

54

Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Snapshots

1 mkdir “A” 0775
2 sync
3 chmod “A” 0600
4 fsync “A”

Enumerate legitimate post-crash states

Hydra in action - Enumerating legitimate states

55

Snapshots

i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Hydra in action - Enumerating legitimate states

56

i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Drop S0 (i1 is persisted)

Snapshots

./A must exist!

1. Check validity of snapshots

Hydra in action - Enumerating legitimate states

57

i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Snapshots

1. Check validity of snapshots

S1 is valid
(does not violate persisted state)

Hydra in action - Enumerating legitimate states

58

i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

[Post-crash state 1]
i0 - name: .
i1 - name: ./A
 mode: 0600

Snapshots

2. Generate possible crash states from valid snapshots

Hydra in action - Bug checking

59

[Post-crash state 1]
i0 - name: .
i1 - name: ./A
 mode: 0600

Crashed F2FS image from Executor (𝛾)
$ cd mnt_point
$ stat A
 Access: (0775/drwxrwxr-x)

𝚺

?

∋

3. Check if the set of legitimate states 𝚺 has crashed state 𝛾 as a member

Hydra in action - Bug found

60

[Post-crash state 1]
i0 - name: .
i1 - name: ./A
 mode: 0600

Crashed F2FS image from Executor (𝛾)
$ cd mnt_point
$ stat A
 Access: (0775/drwxrwxr-x)

3. Check if the set of legitimate states 𝚺 has crashed state 𝛾 as a member

𝚺

∌

None of the states have A’s mode as 0775.
This is a bug! (reported and patched)

Evaluation
Effectiveness and performance
as a fuzzing framework

61

Evaluation - Hydra is effective

● Hydra found 36 new semantic bugs (+ 33 memory errors)
○ including a crash consistency bug in FSCQ, a verified file system

62

File System
(checker)

Crash Consistency
(SymC3)

Logic Bugs
(In-kernel checks)

Spec. Violation
(SibylFS)

ext4 1 0 1

Btrfs 4 7 2

F2FS 3 16 1

FSCQ 1 - -

Total 9 23 4

Evaluation - Hydra is effective

● Hydra found 36 new semantic bugs (+ 33 memory errors)
○ including a crash consistency bug in FSCQ, a verified file system

63

File System
(checker)

Crash Consistency
(SymC3)

Logic Bugs
(In-kernel checks)

Spec. Violation
(SibylFS)

ext4 1 0 1

Btrfs 4 7 2

F2FS 3 16 1

FSCQ 1 - -

Total 9 23 4

Bug: dir is lost upon crash, if another file is truncated
Dev: “ftruncate was broken, and used an
 unverified helper function”

Evaluation - Hydra quickly explores input space

● Performance of Hydra’s state exploration with checkers

64
0

Logic bugs
(102.8 exec/sec)

Memory safety
(98.4 exec/sec)

Crash consistency
(11.4 exec/sec)

POSIX conformance
(4.5 exec/sec)

Checker overhead (ms)

Th
ro

u
gh

p
u

t
(e

xe
c/

se
c)

Evaluation - Hydra quickly explores input space

● Faster than VM-based kernel fuzzing

65
0

Logic bugs
(102.8 exec/sec)

Memory safety
(98.4 exec/sec)

Crash consistency
(11.4 exec/sec)

POSIX conformance
(4.5 exec/sec)

Checker overhead (ms)

Th
ro

u
gh

p
u

t
(e

xe
c/

se
c)

VM-based approach
(0.7 exec/sec)

Evaluation - Hydra generates better test cases

● ext4 code coverage of Hydra vs kernel fuzzers

66Code coverage (12 hours)

Hydra

Syzkaller

kAFL

Evaluation - Hydra generates better test cases

● Hydra reaches more code paths

67Code coverage (12 hours)

Hydra

Syzkaller

kAFL

1.6x

8.7x

Evaluation - Hydra test cases vs B3 test suite

● B3 generates test cases by enumerating FS operations
○ Limits input space with bounds (e.g., #ops <= 3)

68

Hydra

B3

(used up all B3 test cases)

Code coverage (12 hours)

Evaluation - Hydra test cases vs B3 test suite

● B3 generates test cases by enumerating FS operations
○ Limits input space with bounds (e.g., #ops <= 3)

69

Hydra

B3

(used up all B3 test cases)

Code coverage (12 hours)

B3’s enumerated test cases explore less code

Hydra generates test cases on-the-fly

Evaluation - Hydra test cases vs B3 test suite

● B3 generates test cases by enumerating FS operations
○ Limits input space with bounds (e.g., #ops <= 3)

70

Hydra

B3

(used up all B3 test cases)

Code coverage (12 hours)

B3’s enumerated test cases explore less code

B3 missed all of the crash consistency bugs
found by Hydra & SymC3

Hydra generates test cases on-the-fly

Summary

● Hydra is an extensible fuzzing framework for one-stop testing

on multiple aspects of file systems
○ Open-sourced at https://github.com/sslab-gatech/hydra

71

https://github.com/sslab-gatech/hydra

Summary

● Hydra is an extensible fuzzing framework for one-stop testing

on multiple aspects of file systems
○ Open-sourced at https://github.com/sslab-gatech/hydra

● Discovered hard-to-detect semantic bugs (& memory bugs)
○ 9 crash consistency bugs (1 in verified file system, FSCQ)

○ 4 POSIX violations, 23 Logic bugs, and 33 memory bugs

72

https://github.com/sslab-gatech/hydra

Summary

● Hydra is an extensible fuzzing framework for one-stop testing

on multiple aspects of file systems
○ Open-sourced at https://github.com/sslab-gatech/hydra

● Discovered hard-to-detect semantic bugs (& memory bugs)
○ 9 crash consistency bugs (1 in verified file system, FSCQ)

○ 4 POSIX violations, 23 Logic bugs, and 33 memory bugs

● Further extensions as future work
○ More bug checkers, e.g., data race checker

○ Support for distributed file systems

73

https://github.com/sslab-gatech/hydra

Demonstration - fuzzing for 10 mins

Wait, the fuzzing result?

Thank you!

Q & A

This research is supported by

