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Fuzzing F2FS in Linux v5.0-rc7 for crash consistency
Result at the end of the talk!

Demonstration
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Question: Can file systems be bug-free?
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● Code base is massive
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Can file systems be bug-free? Not likely
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39 KLoC 98 KLoC 94 KLoC

+ common VFS layer (53 KLoC)!



Can file systems be bug-free? Not likely

● Code base is massive and evolving

39 KLoC 98 KLoC 94 KLoC

6



Can file systems be bug-free? Not likely

● Code base is massive and evolving
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100+ ext4, Btrfs, XFS bugs were reported in 2019

39 KLoC 98 KLoC 94 KLoC



File system bugs are devastating

● Bugs and effects
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Crash consistency bug

Specification violation

Logic bug

Memory error

Data loss / corruption!

Unexpected runtime error!

!

DoS / Privilege escalation!

Incorrect result



Previous approaches to find FS bugs
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● Feedback-driven fuzzing is a complementary solution
○ Produces effective test cases on-the-fly

○ Proven to be scalable in practice

○
● Known file system fuzzers

○ VM-based kernel fuzzers
■ kAFL (Security’17), Syzkaller (Google)

○ LibOS-based fuzzer
■ Janus (S&P’19) - our previous work!

Our approach: Fuzzing file systems

14
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Our approach: Fuzzing file systems
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🙂

🙂 Janus discovered 90 memory-safety bugs 

from file systems in 2018 🙂

However, existing file system fuzzers 
focus only on memory-safety bugs 🙁



File system bugs in various flavors

● Memory-safety bugs

(focus of existing fuzzers)

17
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*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.” 
FAST’13



File system bugs in various flavors

● Memory-safety bugs

(focus of existing fuzzers)

● Semantic bugs
○ Crash consistency bug

○ Specification violation

○ Logic bug

○ ...
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File system bugs in various flavors

● Memory-safety bugs

(focus of existing fuzzers)

● Semantic bugs
○ Crash consistency bug

○ Specification violation

○ Logic bug

○ ...

19*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.” 
FAST’13

12 %
(219)

88 %
(1786)

We’d like to take advantage of fuzzing 
for finding semantic bugs 



Challenge: Semantic bugs are harder to detect

● Key idea in fuzzing: “Crashes” are feedback to fuzzers

20
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Challenge: Semantic bugs are harder to detect

● Key idea in fuzzing: “Crashes” are feedback to fuzzers
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FUZZER
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Fuzzing for memory-safety bugs

feedback
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Detected!

if BUG, crash



Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)
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Challenge: Semantic bugs are harder to detect

● Problem: Semantic bugs fail SILENTLY (i.e., no feedback)
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FUZZER
Target

program

input

Fuzzing for memory-safety bugs

if BUG, crashfeedback
(e.g., SIGSEGV)

FUZZER
Target

program

Fuzzing for semantic bugs
(e.g., spec. violation)

input

!

Detected!

Detected :)

Retval 
checker

if BUG, function returns 
a wrong value internally

signal
Accurate checker for each bug type
needs to be integrated to fuzzing!



Proposed solution: Hydra
A turnkey solution for
file system fuzzing

30



HYDRA overview (high-level)
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Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback



HYDRA overview - Input generator
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Test Executor

Checker BUG!
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AFL variant*

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019



HYDRA overview - Test case
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HYDRA overview - LibOS-based test executor
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Checker BUG!
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HYDRA overview - Checker
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Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

FS image
+
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HYDRA overview - Feedback
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Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

FS image
+

System calls
Check for bugAFL variant*

Mount img,
exec syscalls

- FS-specific code coverage
- Checker-defined signal



Hydra framework takes care of
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Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

- Automated input space exploration
- Test execution
- Incorporation of checkers, ...

- Develop and 
plug-in a bug checker



In the meantime.. a tester can
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Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

- Automated input space exploration
- Test execution
- Incorporation of checkers, ...

- Develop and plug-in 
a specialized bug checker



Separation of concern!
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Input generator Test case LibOS-based
Test Executor

Checker BUG!

Feedback

- Develop and plug-in 
a specialized bug checker

- Automated input space exploration
- Test execution
- Incorporation of checkers, ...

Developers may focus solely on describing the 
bugs of their own interests



● Through pluggable checkers

Hydra is extensible!
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Input generator Test case LibOS-based
Test Executor

BUG!

Feedback

Crash consistency bug

Consistency checker
e.g., SymC3

Spec. Violation

POSIX checker
e.g., SibylFS

Logic bug

Built-in FS checks

Memory safety bug

Address sanitizer
e.g., KASAN

In-house developed checker

Existing oracle, with few lines for integration

In-kernel checker, used as is



● Through pluggable checkers

Hydra is extensible!
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Input generator Test case LibOS-based
Test Executor

BUG!

Feedback

Crash consistency bug

Consistency checker
e.g., SymC3

Spec. Violation

POSIX checker
e.g., SibylFS

Logic bug

Built-in FS checks

Memory safety bug

Address sanitizer
e.g., KASAN

In-house developed checker

Existing oracle, with few lines for integration

In-kernel checker, used as is

Readily extensible to other types of bugs by 
plugging in relevant checkers



Hydra in action
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Finding crash consistency bug
utilizing SymC3 checker with Hydra



Hydra in action - Crash consistency testing

● SymC3: Symbolically evaluate crashing states
(i.e., keeping in-memory and on-disk states, like real FS implementation)

○ Input    : a list of system calls, initial state

○ Output: a list of legitimate post-crash states

43
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Hydra in action - Crash consistency testing

● SymC3: Symbolically evaluate crashing states
(i.e., keeping in-memory and on-disk states, like real FS implementation)

○ Input    : a list of system calls, initial state

○ Output: a list of legitimate post-crash states

● Checking errors:
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Test
case

LibOS 
Executor

SymC3
𝚺: Set of legit. states
    {state1, state2, …}

𝛾: Crash-recovered
     concrete state

(states contain symbols)

𝛾 ∈ 𝚺 ?

execute
& crash

emulate

Not bug

Bug

True

False



Hydra in action - Fuzzer-generated test case

● Simplest test case (but it was a real bug in F2FS!)

48

1  mkdir “A” 0775
2  sync
3  chmod “A” 0600
4  fsync “A”



Hydra in action - Initial emulator states
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1  mkdir “A” 0775
2  sync
3  chmod “A” 0600
4  fsync “A”

Tree

i0 .

In-memory

i0.dents=[.]

On-disk

i0.dents=[.]

i0 .

Snapshots

Initial states in the 
emulator

Store possible 
inode hierarchy



Hydra in action - Emulation of test case
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Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

On-disk

i0.dents=[.]

Snapshots

new inode created
in memory

Store new 
tree-snapshot

1  mkdir “A” 0775
2  sync
3  chmod “A” 0600
4  fsync “A”



Hydra in action - Emulation of test case
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Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

Snapshots

All metadata flushed to disk

1  mkdir “A” 0775
2  sync
3  chmod “A” 0600
4  fsync “A”



Hydra in action - Emulation of test case
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Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775,0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0775]

Snapshots

1  mkdir “A” 0775
2  sync
3  chmod “A” 0600
4  fsync “A”

New metadata is written
History of metadata changes 

is maintained



Hydra in action - Emulation of test case
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Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Snapshots

1  mkdir “A” 0775
2  sync
3  chmod “A” 0600
4  fsync “A”

i1’s metadata flushed to disk



Hydra in action - End of test case emulation
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Tree

i0 .

i1 A

i0 .

i0 .

i1 A

In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Snapshots

1  mkdir “A” 0775
2  sync
3  chmod “A” 0600
4  fsync “A”

Enumerate legitimate post-crash states



Hydra in action - Enumerating legitimate states
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Snapshots

i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]



Hydra in action - Enumerating legitimate states
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i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Drop S0 (i1 is persisted)

Snapshots

./A must exist!

1. Check validity of snapshots



Hydra in action - Enumerating legitimate states
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i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

Snapshots

1. Check validity of snapshots

S1 is valid
(does not violate persisted state)



Hydra in action - Enumerating legitimate states
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i0 .

i0 .

i1 A

[S1][S0] In-memory

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

On-disk

i0.dents=[., A]
i1.dents=[.]
i1.mode =[0600]

[Post-crash state 1]
i0 - name: .
i1 - name: ./A
     mode: 0600

Snapshots

2. Generate possible crash states from valid snapshots



Hydra in action - Bug checking
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[Post-crash state 1]
i0 - name: .
i1 - name: ./A
     mode: 0600

Crashed F2FS image from Executor (𝛾)
$ cd mnt_point
$ stat A
  Access: (0775/drwxrwxr-x)

𝚺

?

∋

3.  Check if the set of legitimate states 𝚺 has crashed state 𝛾 as a member



Hydra in action - Bug found
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[Post-crash state 1]
i0 - name: .
i1 - name: ./A
     mode: 0600

Crashed F2FS image from Executor (𝛾)
$ cd mnt_point
$ stat A
  Access: (0775/drwxrwxr-x)

3.  Check if the set of legitimate states 𝚺 has crashed state 𝛾 as a member

𝚺

∌

None of the states have A’s mode as 0775.
This is a bug! (reported and patched)



Evaluation
Effectiveness and performance
as a fuzzing framework

61



Evaluation - Hydra is effective

● Hydra found 36 new semantic bugs (+ 33 memory errors)
○ including a crash consistency bug in FSCQ, a verified file system
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File System
(checker)

Crash Consistency
(SymC3)

Logic Bugs
(In-kernel checks)

Spec. Violation
(SibylFS)

ext4 1 0 1

Btrfs 4 7 2

F2FS 3 16 1

FSCQ 1 - -

Total 9 23 4



Evaluation - Hydra is effective

● Hydra found 36 new semantic bugs (+ 33 memory errors)
○ including a crash consistency bug in FSCQ, a verified file system

63

File System
(checker)

Crash Consistency
(SymC3)

Logic Bugs
(In-kernel checks)

Spec. Violation
(SibylFS)

ext4 1 0 1

Btrfs 4 7 2

F2FS 3 16 1

FSCQ 1 - -

Total 9 23 4

Bug: dir is lost upon crash, if another file is truncated
Dev: “ftruncate was broken, and used an
           unverified helper function”



Evaluation - Hydra quickly explores input space

● Performance of Hydra’s state exploration with checkers

64
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Evaluation - Hydra quickly explores input space

● Faster than VM-based kernel fuzzing
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Memory safety
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VM-based approach
(0.7 exec/sec)



Evaluation - Hydra generates better test cases

● ext4 code coverage of Hydra vs kernel fuzzers

66Code coverage (12 hours)

Hydra

Syzkaller

kAFL



Evaluation - Hydra generates better test cases

● Hydra reaches more code paths

67Code coverage (12 hours)

Hydra

Syzkaller

kAFL

1.6x

8.7x



Evaluation - Hydra test cases vs B3 test suite

● B3 generates test cases by enumerating FS operations
○ Limits input space with bounds (e.g., #ops <= 3)

68

Hydra

B3

(used up all B3 test cases)

Code coverage (12 hours)



Evaluation - Hydra test cases vs B3 test suite

● B3 generates test cases by enumerating FS operations
○ Limits input space with bounds (e.g., #ops <= 3)
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Hydra

B3

(used up all B3 test cases)

Code coverage (12 hours)

B3’s enumerated test cases explore less code

Hydra generates test cases on-the-fly



Evaluation - Hydra test cases vs B3 test suite

● B3 generates test cases by enumerating FS operations
○ Limits input space with bounds (e.g., #ops <= 3)
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Hydra

B3

(used up all B3 test cases)

Code coverage (12 hours)

B3’s enumerated test cases explore less code

B3 missed all of the crash consistency bugs
found by Hydra & SymC3

Hydra generates test cases on-the-fly



Summary

● Hydra is an extensible fuzzing framework for one-stop testing 

on multiple aspects of file systems
○ Open-sourced at https://github.com/sslab-gatech/hydra
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Summary

● Hydra is an extensible fuzzing framework for one-stop testing 

on multiple aspects of file systems
○ Open-sourced at https://github.com/sslab-gatech/hydra

● Discovered hard-to-detect semantic bugs (& memory bugs)
○ 9 crash consistency bugs (1 in verified file system, FSCQ)

○ 4 POSIX violations, 23 Logic bugs, and 33 memory bugs

● Further extensions as future work
○ More bug checkers, e.g., data race checker

○ Support for distributed file systems

73

https://github.com/sslab-gatech/hydra


Demonstration - fuzzing for 10 mins

Wait, the fuzzing result?



Thank you!

Q & A

This research is supported by


