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ABSTRACT

We propose Solros—a new operating system architecture for het-
erogeneous systems that comprises fast host processors, slow but
massively parallel co-processors, and fast I/O devices. A general
consensus to fully drive such a hardware system is to have a tight
integration among processors and I/O devices. Thus, in the Solros
architecture, a co-processor OS (data-plane OS) delegates its ser-
vices, specifically I/O stacks, to the host OS (control-plane OS).
Our observation for such a design is that global coordination with
system-wide knowledge (e.g., PCIe topology, a load of each co-
processor) and the best use of heterogeneous processors is critical
to achieving high performance. Hence, we fully harness these spe-
cialized processors by delegating complex I/O stacks on fast host
processors, which leads to an efficient global coordination at the
level of the control-plane OS.

We developed Solros with Xeon Phi co-processors and imple-
mented three core OS services: transport, file system, and network
services. Our experimental results show significant performance
improvement compared with the stock Xeon Phi running the Linux
kernel. For example, Solros improves the throughput of file system
and network operations by 19× and 7×, respectively. Moreover, it
improves the performance of two realistic applications: 19× for text
indexing and 2× for image search.
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1 INTRODUCTION

The exponential growth in data is already outpacing both the proces-
sor and storage technologies. Moreover, with the current semicon-
ductor technology hitting its physical limitation, it is heterogeneous
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computing that is becoming the new norm to cater to the surging
computational demands in a power-efficient manner. For example,
various specialized processing architectures, or co-processors, such
as GPUs, TPUs, FPGAs, and ASICs not only have different trade-
offs (e.g., computing power, parallelism, memory bandwidth, and
power consumption) but also are being proposed, developed, and
commercialized.

Since their inception, these co-processors have helped host pro-
cessors by offloading their tasks onto themselves. Hence, in this
computation offloading model, a host application is responsible
for mediating data between I/O devices and co-processors. Un-
fortunately, this mediation leads to both cumbersome application
development and sub-optimal I/O performance without skilled de-
velopers’ optimization (e.g., interleaving communication and com-
putation). To mitigate the issue of sub-optimal I/O, while providing
ease-of-programming, some research efforts have focused on na-
tively supporting I/O operations (e.g., file system [58] and network
stack [37]) on co-processors to enable applications to perform I/O
operations directly to the corresponding devices.

Thus, our key observation is that the centralized coordination of
I/O operations is critical to achieving high performance while pro-
viding ease of programming. In addition, another insight, which we
validate empirically, is that the current I/O stacks are not a good fit for
running on data-parallel co-processors because system-wide decisions
(e.g., deciding an optimal data path) are critical for performance and
flexibility, and I/O stacks are complex, frequent control-flow divergent,
and are difficult to parallelize. Figure 1 shows the I/O throughput
on a host and a Xeon Phi co-processor, which is a PCIe-attached
co-processor running Linux; it illustrates that the throughput on
the Xeon Phi is significantly slower than on a host because it is in-
efficient to run complex, full-fledged I/O stacks on its slow, but mas-
sively parallel, processors. To address this issue, prior works [8, 37]
improve the I/O performance by designing a peer-to-peer (P2P)
communication between devices over a PCIe bus. However, if the
P2P communication is over a socket boundary (i.e., cross NUMA
in Figure 1), we observe a surprisingly lower throughput (8.5×)
than within a socket, which shows that we need extra insight: the
centralized coordination using system-wide knowledge is critical
to achieving high performance.

We propose the Solros architecture, in which the host and co-
processor OSes adopt different roles to fully utilize the hardware
resources. A co-processor OS, named data-plane OS, delegates its
OS services such as file system and network stacks to the host
OS, named control-plane OS. In our approach, the data-plane OS is
a minimal RPC stub that calls several OS services present in the
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Figure 1: Comparison of I/O performance between Solros (Phi-Solros) and stock Xeon Phi (Phi-Linux). I/O performance of Xeon Phi, which

runs a full-fledged Linux I/O stack (i.e., file system and TCP/IP), is significantly slower than Solros: 19× slower in file random read operations

and 7× higher 99th percentile latency in TCP. Though recent studies [8, 37] show improving performance using peer-to-peer communication

between an I/O device and a co-processor, Figure 1(a) shows that judicious use of peer-to-peer communication is required. For example, when

an NVMe SSD directly accesses the memory of a co-processor across a NUMA domain, the maximum throughput is capped at 300MB/sec

because a processor relays PCIe packets to another processor across a QPI interconnect. We observed the same problem in a few generations

of x86 processors. For file IO performance with NVMe SSD, Solros shows even better performance than a host, which is supposed to be the

maximum-possible performance. That is because the Solros file system architecture enables coalescing of multiple storage IO commands

that reduces the number of interrupts from the device (see §4.3 and §5).

control-plane OS and provides isolation among co-processor appli-
cations, if necessary.1 Meanwhile, the control-plane OS running
on a host plays an active role of coordinating and optimizing com-
munications among co-processors and I/O devices because it has
a global view of a system (e.g., topology of PCIe network, load on
each co-processor, and file access of co-processors), which provides
an opportunity for system-wide optimizations.

The idea of delegating a part of OS services, especially I/O ser-
vices, to other OSes is not new; it is widely used in virtualiza-
tion [21, 38, 64], high-performance computing [22, 66], and hetero-
geneous computing with co-processors [37, 51, 58]. In particular,
delegating I/O services on fast but less parallel host processors and
using highly parallel co-processors leads to efficient utilization of
such an architecture. The idea of a split OS architecture (i.e., control-
and data-plane) was originally proposed by Arrakis [53] and IX [15]
to achieve high IO performance for a data-center OS, which we
revisit in the context of heterogeneous computing.

In this paper, we make the following contributions:
• We propose a Solros kernel architecture to provide opti-
mized I/O services for massively parallel co-processors with
a split-OS architecture, in which a co-processor (data-plane)
delegates its I/O services to the host processor (control-
plane), which uses system-wide knowledge to actively coor-
dinate among devices.
• We design three core services for Solros. In particular, we
design a highly optimized transport service for massively
parallel processors and PCIe bus, and build two key OS ser-
vices, namely, file system service and network service, on
top of our transport service. Our file system service judi-
ciously decides whether a data transfer path should use P2P
or host-mediated I/O. Our network service supports the TCP
socket interface and performs load balancing for a server
socket, such that multiple co-processors are listening on the
same address, based on user-provided load-balancing rules.

1In our implementation of Solros using Xeon Phi, the data-plane OS requires two
atomic instructions for RPC and MMU for isolation among co-processor applications.

• We implement Solros using Xeon Phi co-processors and
evaluate it using micro benchmarks and two realistic I/O-
intensive applications. Solros achieves 19× and 7× higher
throughput than Xeon Phi with a Linux kernel for file system
and network services, respectively. Also, it improves the
throughput of text indexing and image search by 19× and
2×, respectively.

The rest of this paper is organized as follows. In §2, we elaborate
technical trends on heterogeneous computing and explain why
high-performance I/O is critical. §3 describes problems in existing
approaches in terms of I/O operations. We then describe Solros’
design (§4) and implementation (§5). §6 presents our evaluation. §7
discusses and §8 compares Solros with previous research, and §9
provides the conclusion.

2 OBSERVATIONS

We are already observing that a wide range of computing systems,
particularly data centers [9, 17, 39, 48, 52, 54, 62], are moving to-
wards heterogeneous systems. Moreover, “we could be moving into
the Cambrian explosion of computer architecture” [27], the era of
processor specialization. We expect that these ongoing technical
trends will further affect the architecture of modern operating sys-
tems; that is, 1) heterogeneous computing will become norm, 2)
co-processors will be generic enough to support wider applications
and ease of programming, and 3) I/O performance will no longer
be a performance bottleneck at least in the hardware.
Specialization of general-purpose processors. Today, one of
the most important aspects of application performance is appli-
cation scalability. To achieve this, heterogeneous processors are
now becoming an inevitable choice. This is happening for two rea-
sons: 1) the end of single-core scaling and continued Moore’s Law,
which has led to the development of manycore processors and 2)
the end of Dennard scaling and the Dark Silicon effect [19], which
is driving the development of specialized, power-efficient processor
architectures.
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To this end, industry has developed various heterogeneous core
architectures. One of the architectures uses a large number of sim-
ple cores that are similar to traditional CPU cores (i.e., smaller cache,
in-order execution, wide SIMD unit, and high simultaneous multi-
threading level). For example, HP’s Moonshot platform [29] com-
prises multiple server cartridges, each of which has four ARM cores
and eight DSP cores. Other co-processors that belong to this cate-
gory are Xeon Phi [5], Lake Crest [49], X-Gene [46], and Tilera [61].
Another one, unlike the conventional CPU-like co-processor de-
sign, uses a simpler but more massively parallel processor archi-
tecture, often called SIMT (single instruction, multiple threads).
One such example is the GPGPU, which is extensively employed in
deep learning these days. Additionally, industry is also adopting
reconfigurable architectures, such as FPGAs, to provide even better
performance per watt.

Thus, we expect that computer systems will become even more
heterogeneous, as workloads determine the performance and effi-
ciency of processors. For example, a general-purpose fat core is a
good match for an application running a few complicated, control-
flow divergent threads, but a specialized lean core fits the criteria
of data-parallel applications.
Generalization of co-processors. The traditional use of co-proc-
essors was to offload computation for niche domains, as they had
only a limited communication interface with the CPU. Unfortu-
nately, communication complicates the co-processor programming
and even makes it difficult and inefficient [13, 37, 58], such as man-
ual allocation of the co-processor memory for data movement. This
is important because of the drastic increase in the data size that
co-processors should process. To overcome such limitations, co-
processors are now adopting the functionality of general-purpose
processors. For example, CPU-like co-processors such as Xeon Phi
and Tilera run a general-purpose OS, notably Linux, to provide full-
fledged OS services, including file-system and networking stacks.
Similar advancements have been in the domain of GPGPUs. In
particular, the Pascal architecture and CUDA 8.0 of NVidia tightly
integrate both host and GPU memory management for simpler pro-
gramming and memory model; GPUs now support unified virtual
addressing to automatically migrate data between the CPU and
GPU as well as memory over-subscription by handling page faults
in the GPU [26].
Blazing fast I/O performance. Another performance-deciding
criterion is I/O. Thus, I/O performance should be fast enough to
keep such processors busy. Fortunately, recent advances in I/O de-
vices has enabled fast I/O performance even in commodity devices.
For instance, a single commodity NVMe SSD provides around a
million IOPS and 5 GB/s bandwidth [60]. Moreover, the upcoming
non-volatile memory technology promises orders of magnitude
performance improvement [42], whereas on the network end, fast
interconnect fabrics (e.g., InfiniBand, RoCE, Omni-Path [31], and
GenZ [28]) provide extremely high bandwidth (e.g., 200 Gbps) and
low latency (e.g., 600 nanoseconds [43]) among machines. Also, cur-
rent PCIe Gen3 x16 already provides 15.75 GB/s and it will double
(i.e., 31.51 GB/s) in PCIe Gen 4, approaching to the bandwidth of
the QPI interconnect.
Summary. Amachine today consists of fat host processors, lean co-
processors, and fast I/O devices. To unveil the potential of hardware,

tight integration of operations among processors and I/O devices
is essential, and recent trends of generalizing co-processors enable
such integration. However, the key challenge remains in software,
specifically the operating system, to efficiently coordinate such
devices.

3 THE PROBLEMS

Several few approaches enable efficient computation in heteroge-
neous systems. Computation offloading can be done with various
parallel programmingmodels and runtimes: OpenCL, OpenMP,MPI,
and CUDA. More recently, Popcorn Linux [12, 13] demonstrated a
seamless migration of computation between host processors and
co-processors by providing a single system image. However, no
well-known model and abstraction exist yet to perform efficient I/O
operations in heterogeneous systems.
Host-centric architecture. In the traditional host-centric archi-
tecture, illustrated in Figure 2(a), a host application mediates I/O op-
erations (e.g., file system and network operations) with co-processors
since there is no I/O abstraction in co-processors. Unfortunately,
this architecture complicates application development and results
in sub-optimal use of hardware resources. For example, for a co-
processor to read a file from an NVMe SSD, a host processor first
reads the file to the host memory and then copies it to the co-
processor memory, which doubles the use of PCIe bandwidth—a
scarce resource for many data-intensive applications. Thus, a de-
veloper should spend significant time optimizing the application
to achieve high performance, such as interleaving communication
and computation.
Co-processor-centric architecture. General-purpose co-proc-
essors, like Xeon Phi or Tilera, run I/O stacks on their own, as
illustrated in Figure 2(b), that simplify application development
with proper I/O abstractions. For example, Xeon Phi runs Linux
and supports various file systems (e.g., ext4 over virtio, NFS over
PCIe) and network protocols (e.g., TCP/IP over PCIe) [33]. Unfortu-
nately, I/O performance is not satisfactory because a lean, massively
parallel co-processor is not a good fit to run I/O stacks that have
frequent control-flow divergent code (e.g., parsing protocol header
and on-disk layout of file system) and need to maintain a system-
wide shared state that becomes a scalability bottleneck. Also, the
co-processor-centric approach misses the opportunities of system-
wide optimization and coordination. For example, as shown in Fig-
ure 1(a), P2P communication drastically degrades while crossing a
NUMA boundary. Thus, system-wide optimization and coordina-
tion are critical to achieve high performance.
Summary. Providing proper I/O abstraction and high performance
is essential to fully drive these heterogeneous systems. However,
existing approaches miss the opportunities of system-wide opti-
mization and coordination.

4 OUR APPROACH: SOLROS

Based on our observations and problems, we think that the hetero-
geneity of processors and the efficient use of I/O should be the first
class consideration in designing an OS for heterogeneous systems.
Considering the diversity of co-processor architectures, it is diffi-
cult (or too early) to define an operating system architecture that
fits all heterogeneous architectures. Nevertheless, in an attempt
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Figure 2: Comparison of heterogeneous computing architectures. (a) In a traditional host-centric architecture, a host application mediates I/O

data between I/O devices and co-processors. Application development is cumbersome because of no proper I/O abstraction in co-processors.

In addition, performance is sub-optimal without developers’ significant optimization because data is always first staged in the host memory

2 and then copied into the co-processor memory 3 , which doubles the use of interconnect (e.g., PCIe bus) and DMA engines. (b) In a co-

processor-centric architecture, a co-processor OS has I/O stacks (e.g., file system and network stack) and initiates I/O operations. The OS

delegates some of its functionalities to the host OS, which it cannot do (e.g., access I/O registers, such as a doorbell register). Performance

is sub-optimal because data-parallel co-processors are not efficient to run complex and branch-divergent I/O stacks. More importantly, this

approach misses opportunities of system-wide optimization and coordination. (c) In our Solros architecture, a co-processor OS (data-plane

OS) is a lean RPC stub and provides isolation among co-processor applications if necessary; the host OS (control-plane OS) performs actual I/O

operations. The control-plane OS actively coordinates in a system-wide fashion with a data-plane OS: it decides optimal data path considering

the interconnect topology (e.g., peer-to-peer), manages shared resources among data-plane OSes (e.g., shared host-side buffer cache), and even

shards incoming network packets to one the of co-processors based on user-provided load-balancing rules.

to shed some light on this, we propose our Solros architecture in
which independent OSes running on processing domains (i.e., a
host processor or co-processor) coordinate among themselves.

In our approach, the OSes of a host and co-processor perform
different roles (see Figure 2(c)): the data-plane OS on a co-processor
forwards OS services requests of an application (e.g., file system and
network operations) to the control-plane OS on the host to reduce
its complexity and runtime overhead. If necessary, the data-plane
OS provides isolation among co-processor applications, whereas
the control-plane OS on the host receives requests from data-plane
OSes and performs requested operations on their behalf. A control-
plane OS is not a simple proxy of a data-plane OS; since a control-
plane OS has a global view of system resources, it takes a central
role of optimizing communication paths among devices and load-
balancing among devices. In particular, the Solros architecture has
the following advantages:
Efficient global coordination among processors. A control-
plane OS is a natural place for global coordination because it has
global knowledge of a system, such as the topology of the PCIe net-
work, load on each co-processor, and file access of each co-processor,
which leads to system-wide optimization. For example, our file sys-
tem service decides the data transfer path (e.g., peer-to-peer or
host-staging copy), depending on the PCIe topology, and prefetches
frequently accessed files from multiple co-processors to the host
memory (see Figure 1(a)). Also, our network service performs load
balancing of an incoming request of a server socket to one of the
least loaded co-processors. Thus, Solros is a shared-something ar-
chitecture, in which status in a control-plane OS is shared by multi-
ple data-plane OSes. In Solros, only the control-plane OS directly
controls IO devices (e.g., initiating DMA operations from NVMe
SSD to accelerator memory), thereby protecting I/O devices from
untrusted and unauthorized accesses from co-processors.
Best use of specialized processors. Our split-OS approach en-
ables OS structures to be simple and optimized for each processor’s

characteristics. In particular, I/O stacks (e.g., file system and net-
work protocol) are frequently control-flow divergent and difficult
to parallelize, as shown by previous studies [15, 47] (see Figure 13).
Thus, it is appropriate to run I/O stacks on fast but less parallel host
processors rather than on slow but massively parallel co-processors.
Required hardware primitives. To support a wide range of
co-processors, we design Solros with minimal hardware prim-
itives: two atomic instructions (atomic_swap and compare_and_-
swap2), and the capability of the co-processor to expose its physical
memory to a host for implementing a RPC stub. Thus, a data-plane
OS becomes lean, as many OS services can be delegated to the
control-plane OS, except essential task and memory management.
Thus, adding a new OS service in a data-plane OS is mostly adding
RPC stubs that communicate to the proxy in the control-plane OS.
The data-plane OS should provide isolation among co-processor
applications if necessary. In our implementation of Solros, we rely
on the MMU of the Xeon Phi.

In the rest of this section, we first describe how a host processor
sees devices (§4.1) and then elaborate on three operating services:
transport service (§4.2), file system service (§4.3), and network
service (§4.4).

4.1 View of the Host Processor on Devices

Modern computer systems have multiple physical address spaces
to support various PCIe devices. This enables various PCIe devices
(e.g., Xeon Phi, GPGPU, NIC, and NVMe SSD), which are equipped
with large amounts of on-card memory, to form a separate physical
address space. Besides the normal memory-mapped and I/O port
spaces (MMIO and PIO), such on-card memory regions are mapped
to special ranges of physical address space, called PCIe window, of
the host. Similar to other physical memory regions, a host processor
can access the mapped on-chip memory of devices using either

2 atomic_swap can be emulated using a compare_and_swap loop.
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mapped to a PCIe window in the host; a host again maps the same

PCIe window to the virtual address of a user application, which al-

lows the user application to directly access the memory region of

Xeon Phi.

load/store instructions or DMA operations. Also, these regions
can have corresponding virtual address regions that allow user
processes to access them (see Figure 3). Even in commodity systems
without special hardware support, a host processor can control
and coordinate any devices by accessing the exported physical
memory and I/O ports of a device. For example, a host can initiate
P2P communication between an NVMe SSD and a Xeon Phi co-
processor by setting the target (or source) address of an NVMe
operation to the system-mapped PCIe window of the Xeon Phi
memory.

4.2 Transport Service

A control-plane OS running on a host can access each device’s
memory region through system-mapped PCIe windows. For the
performance and simplicity of Solros, it is critical to efficiently
transfer data among these memory regions in a unified manner.
However, this is challenging because of the idiosyncratic perfor-
mance characteristics of a PCIe network, asymmetric performance
between the host and co-processors, and massively parallel co-
processors.

Our transport service hides such complexity and exposes a sim-
ple interface for other OS services. In addition, it provides high
scalability as well as low latency and high bandwidth with respect
to manycores to run on massively parallel co-processors. To achieve
high performance and high scalability over a PCIe bus, we handle
four aspects in designing our transport service:
• Exploit PCIe performance characteristics (§4.2.1)
• Separate data transfer from queue operations to parallelize
data access operations (§4.2.2)
• Adopt combining-based design for high scalability in mas-
sively parallel accelerators (§4.2.3)
• Replicate queue control variables (i.e., head and tail) to
minimize costly PCIe transactions (§4.2.4)

We first describe the PCIe performance characteristics analysis and
present the design of our transport service.

4.2.1 PCIe Performance Characteristics. System-mapped PCIe
windows can be accessed using eithermemory operations (load/store)
or DMA operations, which either a host processor or a co-processor
initiates. Interestingly, PCIe performance is heavily affected by an
access method and an initiator of operations.
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host or a Xeon Phi) and transfer mechanism (i.e., either a DMA or a

memcpy using load/store instructions).

Figure 4 shows our evaluation with a Xeon Phi co-processor
(see the environment details in §6) measuring the bi-directional
bandwidth of the PCIe. Each access mechanism has pros and cons.
For large data transfer, a DMA operation is faster than a memory
operation. For 8 MB data transfer, the DMA copy operation is 150×
and 116× faster than memcpy in a host processor and Xeon Phi
co-processor, respectively. However, for small data transfer, the
latency of a memory operation is lower than a DMA operation. For
a 64-byte data transfer, memcpy is 2.9× and 12.6× faster than a DMA
copy in a host processor and a Xeon Phi co-processor, respectively.
Since each load/store instruction on the system-mapped region
eventually issues a PCIe transaction of a cache line size (64 bytes),
there is no initialization cost (i.e., low latency for small data), but a
large data will be transferred with multiple cache line-sized PCIe
transactions (i.e., low bandwidth for large data). In contrast, a DMA
operation requires initialization such as setting up a DMA channel
(i.e., high latency for small data), but a large data will be transferred
in a single PCIe transaction (i.e., high bandwidth for large data).

Another important factor that significantly affects PCIe per-
formance is who initiates data transfer operations. As Figure 4
shows, in all cases a host-initiated data transfer is faster than a
co-processor initiated one—2.3× for DMA and 1.8× for memcpy—
because of the asymmetric performance between a host processor
and a co-processor, i.e., a DMA engine and memory controller in a
host processor is faster than a Xeon Phi co-processor.

4.2.2 Parallelizing Data Access Operations. We designed our
transport service to achieve three goals: 1) a simple programming in-
terface, 2) manycore scalability for massively parallel co-processors,
and 3) high performance by taking care of the characteristics of
the PCIe network. To this end, we provide a ring buffer over PCIe.
As the API list in Figure 5 shows, our ring buffer is a fixed size for
simple memory management but supports variable-size elements
for flexibility. It allows concurrent producers and consumers. Also,
it supports non-blocking operations; it returns EWOULDBLOCK when
the buffer is empty upon a dequeue operation or when the buffer is
full upon an enqueue operation so its users (e.g., file system and
network stack) can decide to retry or not.

On one end, we create amaster ring buffer that allocates physical
memory. Then we associate a shadow ring buffer with the master
ring buffer on the other end. We can send data in either direction.
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1 /** Create a master ring buffer with a given size
2 * return a master handle */
3 int rb_master_init(struct rb *rb, int size);
4 /** Create a shadow ring buffer attached
5 * to a master ring buffer with a given master handle */
6 struct rb *rb_shadow_init(int master_handle);
7 /** Enqueue 1) enqueue data with a given size
8 * returning a ring buffer memory to fill in (rb_buf) */
9 int rb_enqueue(struct rb *rb, int size, void **rb_buf);
10 /** Enqueue 2) copy data to the ring buffer memory (rb_buf) */
11 void rb_copy_to_rb_buf(void *rb_buf, void *data, int size);
12 /** Enqueue 3) mark the enqueued data ready to dequeue */
13 void rb_set_ready(void *rb_buf);
14 /** Dequeue 1) dequeue a data from the head of a ring buffer
15 * returning a ring buffer memory to copy out (rb_buf) */
16 int rb_dequeue(struct rb *rb, int *size, void **rb_buf);
17 /** Dequeue 2) copy data from the ring buffer memory (rb_buf) */
18 void rb_copy_from_rb_buf(void *data, void *rb_buf, int size);
19 /** Dequeue 3) make the dequeue data allow to reuse */
20 void rb_set_done(void *rb_buf);

Figure 5: Solros transport API, which is a fixed-size ring buffer over

the PCIe bus. Amaster ring buffer allocates physical memory and a

shadow ring buffer accesses the master over PCIe. enqueue/dequeue

operations are separated from copy operations so that multiple

threads can access each element concurrently, and ring buffer op-

erations and data access can be interleaved easily.

The shadow ring buffer accesses the associated master through
system-mapped PCIe windows. This master shadow buffer design
exposes a lot of flexibility for performance optimization. That is,
we can exploit asymmetric performance by deciding where to put
the master ring buffer. For example, when we allocate a master
ring buffer at the co-processor memory, the co-processor accesses
the ring buffer in its local memory and a fast host processor ac-
cesses the ring buffer via its faster DMA engine. Therefore, deciding
where to locate a master ring buffer is one of the major decisions
in designing OS services in Solros. Note that a master ring buffer
can be located at either a sender or a receiver side, unlike previous
circular buffers [18, 40] in RDMA, which only allows a receiver to
allocate the buffer memory.

Unlike conventional ring buffers [18, 23, 40], we decouple data
transfer from enqueue/dequeue operations to interleave queue op-
erations with data access operations and to parallelize data access
from each thread. To this end, the rb_enqueue and rb_dequeue do
not copy data from/to a user-provided memory. Instead, they ex-
pose a pointer (rb_buf) to an element memory in a ring buffer
so that a user can directly operate on the element memory. Once
a user data (data) is copied from/to the element memory using
rb_copy_to_rb_buf/rb_copy_from_rb_buf, the element needs to be
set to ready to dequeue (rb_set_ready) or ready to reuse (rb_set_done).

4.2.3 Taming High Concurrency using Combining. One key chal-
lenge in designing transport service is dealing with the high concur-
rency of co-processors, e.g, a Xeon Phi has 61 cores (or 244 hardware
threads). To provide high scalability on such co-processors, we de-
sign our ring buffer with the combining technique [20]. The key
insight is that a combiner thread batches operations for other con-
current threads. Previous studies [20, 41, 55] have shown that for
data structures such as stack and queue, a single thread outper-
forms lock-based and lock-free approaches, as it amortizes atomic
operations while maintaining cache locality.

For combining, one ring buffer internally maintains two re-
quest queues for enqueue and dequeue operations, respectively.
rb_enqueue (or rb_dequeue) first adds a request node to the cor-
responding request queue, which is similar to the lock operation

of an MCS queue lock [44]. If the current thread is at the head
of the request queue, it takes the role of a combiner thread and
processes a certain number of rb_enqueue (or rb_dequeue) opera-
tions. As soon as it finishes processing an operation, it indicates
its completion by toggling the status flag in the request node. A
non-combining thread waits until its status flag is turned on. Our
combining design requires two atomic instructions: atomic_swap
and compare_and_swap, and significantly reduces contention on
control variables (e.g., head and tail) of the ring buffer, which
leads to better scalability.

4.2.4 Minimizing PCIe Overhead by Replication. To exploit the
performance characteristics of PCIe, we use two techniques. First,
rb_copy_to_rb_buf and rb_copy_from_rb_buf use memcpy for small
data and DMA copy for large data to get the best latency and
throughput. In our implementation with Xeon Phi, we use a differ-
ent threshold for a host and a Xeon Phi: 1 KB from a host and 16
KB from Xeon Phi because of the longer initialization of the DMA
channel.

To further reduce costly remote memory accesses over PCIe, we
replicate the control variables (i.e., head and tail) and defer their
updates until required. This is critical because accessing a control
variable over a PCIe bus issues a costly PCIe transaction. In our
master shadow buffer model, a sender, which performs rb_enqueue,
maintains the original copy of tail and the local replica of head.
Similarly, a receiver, which performs rb_dequeue, maintains the
original copy of head and the local replica of tail. This design
improves performance because a sender and receiver can access
head and tail in their local memory without crossing the PCIe
bus. To ensure the correctness of operations, we should properly
synchronize replicated variables. That is, whenever rb_enqueue
sees if a ring buffer is full (or rb_dequeue sees if a ring buffer is
empty), it updates its replicated variable by fetching the original
value from remote. Also, a combiner thread always updates original
values at the end of combining to amortize the remote access cost
with the combining threshold.

4.3 File System Service

The Solros file system is designed for multiple co-processors to
process a large volume of data efficiently. To this end, we run a
lightweight file system stub on a co-processor and a full-fledged file
system proxy on a host processor (see Figure 6). For high perfor-
mance, we optimize the data transfer path between a co-processor
and a disk. We perform P2P data transfer between a disk and a
co-processor whenever possible, which is beneficial, as it allows
a DMA engine of a disk to directly fetch data from/to memory in
a co-processor. In addition, we use host-side buffer cache to im-
prove the I/O performance of accessing data shared by multiple
co-processors.

4.3.1 Data-plane OS. A lightweight file system stub transforms
a file system call from an application to a corresponding RPC, as
there exists a one-to-one mapping between an RPC and a file system
call, which leads to trivial transformation of file system calls to RPC
commands. Thus, a data-plane OS does not necessarily handle the
complicated file system operations, such as maintaining directories,
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Figure 6: File system service in Solros. For file system calls, the

stub on the data-plane OS delegates these operations by sending

RPCmessages to the file system proxy in the control-plane OS. The

control-plane OS decides an operation mode in either the peer-to-

peermode for zero-copy I/O between an SSD and co-processormem-

ory or a bufferedmode considering the PCIe network. If data should

cross NUMA domains, it works in a buffered mode.

disk blocks, and inode, which are delegated to a file system proxy
in the control-plane OS.

A pair of ring buffers is used for RPC. We create their master
ring buffers at the co-processor memory. Hence, RPC operations by
a co-processor are local memory operations; meanwhile, the host
pulls requests and pushes their corresponding results across the
PCIe. Instead of transferring file data in the payload of the RPC, a
data-plane OS sends the physical addresses of co-processor memory
where the file data is read (or written) for zero-copy file system I/O
operations.

4.3.2 Control-plane OS. A file system proxy server in a control-
plane OS pulls file system RPC messages from co-processors. It
executes the requested operations and then returns results (e.g., the
return code of a file system call) to the requested data-plane OS.

For read/write operations that need large data transfer, the proxy
provides two communication modes: 1) in the peer-to-peer com-
munication, it initiates the P2P data transfer between a disk and
memory in a co-processor, which minimizes the data transfer; 2)
in the buffered communication, the proxy manages a buffer cache
between disks and co-processors. The buffered communication
is preferred in several cases: a cache hit occurs; a disk does not
support the peer-to-peer communication (e.g., SCSI disk); a peer-
to-peer communication is slower than the buffered communica-
tion depending on the data path on PCIe network (e.g., crossing a
NUMA boundary); or files are explicitly opened with our extended
flag O_BUFFER for buffered I/O operations. Besides these cases, the
proxy initiates the peer-to-peer communication for zero-copy data
transfer between a disk and a co-processor.

In the peer-to-peer communication, the proxy translates the file
offset to the disk block address and also translates the physical
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Figure 7: Network service in Solros. It is composed of a thin net-

work stub on a data-plane OS and a full-featured proxy on a control-

plane OS. Host DMA engines pull outgoing data to send and co-

processor DMA engines pull incoming data to receive so we can

fully exploit the hardware capability for data transfer. The control-

plane OS performs load balancing among co-processors; it allows

multiple co-processors to listen to the same port (i.e., a shared lis-

tening socket) and Solrosmakes load-balancing decision based on

a user-provided forwarding rules.

memory address of a co-processor to the system-mapped PCIe
window address (refer §4.1). It then issues disk commands with
disk block addresses and system-mapped addresses of co-processor
physical memory. Finally, the DMA engine of the disk will directly
copy from/to the co-processor’s memory. For file system metadata
operations (e.g., creat, unlink, stat), the proxy calls the underlying
file system and returns the results to a co-processor.

4.4 Network Service

Similar to the file system service, data-plane OS delegates its net-
work service, particularly TCP in our current design, to the control-
plane OS (see Figure 7). The data-plane OS uses RPC for its initiating
socket operations, and socket events (e.g., a new client is connected
or new data arrives) are delivered via an event-notification channel
over our transport service. Similar to our file system service, there
is a one-to-one mapping with a socket system call. The control-
plane OS performs load balancing among co-processors; it allows
multiple co-processors to listen to the same port and performs
load balancing based on user-provided policy. Solros’ network
service is designed for high performance, manycore scalability, and
seamless scalability across multiple co-processors.

4.4.1 RPC communication. We maintain two ring buffers for
network RPC: an outbound ring buffer for send and connect, and
an inbound ring buffer for recv and accept. We place those ring
buffers to maximize performance; we create an outbound ring buffer
as a master at a co-processor and an inbound ring buffer as a master
at a host processor. By doing so, we can fully exploit the DMA
engines of a host and a co-processor simultaneously; the host DMA
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Module

Lines of code

Added lines Deleted lines

Transport service 1,035 365

File system Service Stub 5,957 2,073
Proxy 2,338 124

Network Service Stub 2,921 79
Proxy 5,609 34

NVMe device driver 924 25
SCIF kernel module 60 14

Total 18,844 2,714

Table 1: Summary of lines of modifications

engines pull outgoing data and the co-processor DMA engines pull
incoming data from the other end. In addition, the inbound ring
buffer is large enough (e.g., 128 MB) to backlog incoming data or
connections.

4.4.2 Event notification. We design the event notification of the
Solros network service for high scalability by minimizing con-
tention on the inbound ring buffer and high degree parallelism for
data transfer. To this end, a data-plane OS has an event dispatcher
thread that distributes inbound events (e.g., recv and accept) to
corresponding sockets. It dequeues an event from the inbound ring
buffer (rb_dequeue) and enqueues the ring buffer address (rb_buf),
where data is located, to a per-socket event queue. When an applica-
tion calls inbound system calls, its thread dequeues the per-socket
event queue, copies the data on the inbound ring buffer (rb_buf) us-
ing rb_copy_from_rb_buf, and finally releases data on the inbound
ring buffer using rb_set_done. This design alleviates contention on
the inbound ring buffer by using a single-thread event dispatcher
and maximizes parallel access of the inbound ring buffer from mul-
tiple threads. A potential problem is that the single-thread event
dispatcher can be a bottleneck. However, we have not observed
such cases even in the most demanding workload (i.e., 64-byte ping
pong) with the largest number of hardware threads (i.e., 244 threads
in Xeon Phi).

4.4.3 Load balancing. In Solros, running a network server on
a co-processor is the natural way to expose the capability of a co-
processor to the outside. Solros supports a shared listening socket
for seamless scalability of network servers running on multiple
co-processors. Solros allows for multiple co-processors to listen
to the same address and port. When packets arrive, the network
proxy decides which co-processor a packet is forwarded to. Solros
provides a pluggable structure to enable packet forwarding rules
for an address and port pair, which can either be connection-based
(i.e., for every new client connection) or content-based (e.g., for
each request of key/value store [36]). In addition, a user can use
other extra information, such as load on each co-processor, to make
a forwarding decision. Thus, our shared listening socket is a simple
way to scale out network services using multiple co-processors.

5 IMPLEMENTATION

We implemented Solros for an Intel Xeon Phi co-processor, which
is attached to a PCIe bus. A Xeon Phi co-processor runs Linux kernel
modified by Intel. Thus, we implemented the control-plane OS and
the data-plane OS by extending those Linux kernels (see Table 1).

Transport service. We implement our transport service using In-
tel SCIF [32], which provides mmap and DMA operations of Xeon Phi
memory to a host (or vice versa). Our ring buffer is implemented
as a fixed-size array that is mapped to the other side over PCIe
through SCIF mmap API. We did two optimizations for performance.
The first optimization parallelizes DMA operations on a ring buffer.
As SCIF does not allow concurrent DMA operations on a mapped
memory region over PCIe, we map the same memory region multi-
ple times for concurrent DMA operations, which accounts for eight
mappings because both a Xeon and Xeon Phi processor have eight
DMA engines. One common problem of the array-based ring buffer
is checking if an element spans at the end of the array. To avoid
explicit range checking, we make our ring buffer truly circular; we
mmap-ed the array twice to a contiguous address range so that the
data access overrun at the end of the array goes to the beginning
of the array.
File system service. For Xeon Phi, we implemented the file system
stub under the VFS layer. For the RPC of the file system service,
we extended the 9P protocol [6] to support zero-copy data transfer
between a disk and a co-processor. In particular, we extended Tread
and Twrite passing the physical address of a Xeon Phi instead of
carrying data. We developed the file system proxy based on the
diod 9P server [2].

For peer-to-peer operations, we translate a file offset to a disk
block address and a physical memory address of Xeon Phi to a
system-mapped PCIe window address. We get an inverse mapping
from a disk block address from a file offset using fiemap ioctl [4].
One limitation using fiemap is that the file system proxy should run
on an in-place-update file system (e.g., ext4, XFS), which does not
change disk block address upon overwriting, so it is safe to directly
access disk blocks. The SCIF kernel module translates the physical
memory address of Xeon Phi to a corresponding system-mapped
PCIe window address.
OptimizedNVMedevice driver. We added two ioctl commands
(p2p_read and p2p_write) to the NVMe device driver for the file
system proxy to issue peer-to-peer disk operations. These two new
ioctl commands are IO vectors that contain all NVMe commands
to process a read/write system call, which is required for a frag-
mented file, as multiple NVMe commands are necessary to serve
one read/write file system call. Our IO vector design improves
the performance by coalescing multiple ioctl commands into one,
thereby reducing the context switching overhead to the kernel.

To further improve performance, we optimized the NVMe device
driver to process these new ioctl commands. Our optimized driver
batches all NVMe commands in one IO vector, which corresponds to
one read/write system call, ringing the NVMe doorbell and receiv-
ing the interrupt only once. This approach improves performance
because it reduces the number of interrupts raised by ringing the
doorbell. Due to this optimization, which is only possible in Solros,
the file system performance of Solros is sometimes better than
that of the host (see Figure 1).
Network service. For the communication between a network
proxy and a stub, we defined 10 RPC messages, each of which
corresponds to a network system call, and two messages for event
notification of a new connection for accept and new data arrival for
recv. Our TCP stub is implemented as an INET protocol family in
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pair benchmarkwith 64-byte elements. Even under high core count,

our combining-based ring buffer show superior scalability than the

two-lock queue, which is a widely-implemented algorithm, without

performance degradation. At 61 cores, Solros provides 1.5× and

4.1× higher performance than the ticket and the MCS-queue lock

version for two-lock queues, respectively.

Linux kernel. In the TCP proxy, we implemented a connection-based
round-robin load-balancing policy for a shared listening socket. The
TCP proxy relies on the TCP/IP stack in the Linux kernel on a host.

6 EVALUATION

We evaluate Solros on a server running Linux kernel 4.1.0 with
two Xeon E5-2670 v3 processors, each having 24 physical cores,
eight DMA channels, and 768 GBmemory. We use four Xeon Phi co-
processors with 61 cores or 244 hardware threads that are connected
to the host via PCIe Gen 2 x16. The maximum bandwidth from Xeon
Phi to host is 6.5GB/sec and the bandwidth in the other direction
is 6.0GB/sec [63]. For a storage device, we use a PCIe-attached
Intel 750 NVMe SSD with 1.2 TB capacity [34]. The maximum
performance of the SSD is 2.4GB/sec and 1.2Gb/sec for sequential
reads and writes, respectively. To evaluate network performance,
we use a client machine with two Xeon E5-2630 v3 processors (16
cores or 32 hardware threads). The client machine runs Linux kernel
4.10.0 and is connected to the server through a 100 Gbps Ethernet.
In all experiments running Xeon Phi with Linux TCP stack, we
configured a bridge in our server so our client machine can directly
access a Xeon Phi with a designated IP address.

In the rest of this section, we first show the performance con-
sequences of our design choices for three Solros services (§6.1)
and then illustrate how Solros improves the performance of two
realistic applications (§6.2). Finally, we show the scalability of the
control-plane OS (§6.3).

6.1 Micro benchmarks

We ran micro benchmarks to evaluate the performance and scala-
bility of three Solros services with our design choices.

6.1.1 Transport Service. Our transport service is an essential
building block for other services, so its performance and scalability
is critical. We ran three micro benchmarks for our ring buffer.
Scalability. To evaluate whether our ring buffer is scalable, we
ran an enqueue-dequeue pair benchmark on a Xeon Phi varying
the number of threads. We created both master and shadow ring
buffers at the Xeon Phi to opt out the effect of the PCIe bus. Each
thread alternately performs enqueue and dequeue operations and

0

200

400

600

800

1000

0 10 20 30 40 50 60
0

100

200

300

400

0 10 20 30 40 50 60

op
s/
se
c
(x
10
00
)

# threads

(a) Xeon Phi→ Host

Lazy upate
Eager update

# threads

(b) Host→ Xeon Phi

Figure 9: Performance of Solros’s ring buffer over PCIe with 64-

byte elements. In Figure 9(a), a master ring buffer is created at Xeon

Phi and a host pulls the data over PCIe. Figure 9(b) shows the per-

formance of the other direction. Our lazy update scheme, which

replicates the control variables, improves the performance by 4×

and 1.4× in each direction with decreased PCIe transactions.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

512B
1KB

4KB
16KB

64KB
4MB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

512B
1KB

4KB
16KB

64KB
4MB

Ba
nd

w
id
th

(G
B/
s)

Element size

(a) Xeon Phi→ Host

Element size

(b) Host→ Xeon Phi

memcpy
DMA

Adaptive

Figure 10: Unidirectional bandwidthwith varying element size with

eight concurrent threads. Similar to Figure 9, we create the master

ring buffer at the sender so that the receiver pulls data over PCIe.

For small-size data copy, memcpy performs better thanDMA copy. For

large-size data copy, it is the opposite. Our adaptive copy scheme

performs well regardless of the copy size.

we measured a pair of operations per second. We compare the per-
formance with the two-lock queue [45], which is the most widely
implemented queue algorithm, with two different spinlock algo-
rithms: the ticket and the MCS queue lock.

Figure 8 shows a performance comparison with a varying num-
ber of threads. Our ring buffer performs better than the two-lock
queues. The scalability of the ticket-lock variant degrades with
increasing core count because of the cache-line contention on the
spinlocks. Even the MCS lock, which avoids the cache-line con-
tention, has sub-optimal scalability to Solros because our ring
buffer uses the combining approach, in which a combiner thread
performs batch processing for others, which results in less cache-
line bouncing. Thus, at 61 cores, our ring buffer performs 4.1× and
1.5× faster than the ticket and the MCS lock variants, respectively.
Optimization for PCIe. Figure 9 shows the performance of our
ring buffer over PCIe with and without replicating control variables
(i.e., lazy update of head and tail). With the lazy update scheme, we
maintain a replica of control variables of our ring buffer and defer
the update of the replica when a ring buffer becomes full or empty,
or when a combiner finishes its batch operations. The results show
that the lazy update scheme significantly improves performance
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Figure 11: Throughput of random read operations on an NVMe SSD

with a varying number of threads. Solros and the host show the

maximum throughput of the SSD (2.4GB/sec). However, Xeon Phi

with Linux kernel (virtio and NFS) has significantly lower through-

put (around 200MB/sec).

by 4× and 1.4× in each direction by reducing the number of PCIe
transactions in accessing the control variables. With the lazy update
scheme, our ring buffer over PCIe performs as good as (or even
better) the local version in Figure 8. We note that performance
is asymmetric with respect to directions due to the asymmetric
performance of the host and the Xeon Phi.

As we discussed in §4.2, the data transfer performance over
PCIe is dependent on transfer mechanisms (i.e., DMA or memcpy).
Thus, our ring buffer adaptively decides the transfer mechanism
depending on the element size: use DMA if data is larger than 1KB
or 16KB on a host and Xeon Phi, respectively. Figure 10 shows that
our adaptive copy schemes consistently performs well regardless
of the copy size.

6.1.2 File System Service. We evaluated the file system service
of Solros using a micro benchmark. Figure 11 and 12 show the
throughput of random read and random write operations on a 4
GB file, respectively. We compare the performance in two settings.
1) Xeon Phi with virtio: ext4 file system is running on Xeon Phi
and controls an NVMe SSD as a virtual block device (virtblk). An
SCIF kernel module on the host drives the NVMe SSD according
to requests from the Xeon Phi. An interrupt signal is designated
for notification of virtblk. 2) Xeon Phi with NFS: the NFS client
on Xeon Phi accesses the host file system over the NFS protocol.
We also include the throughput of the host to show the maximum
achievable throughput.

Solros shows significantly higher throughput over the conven-
tional approach, running a whole file system on Xeon Phi (virtio).
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Figure 13: Latency breakdown of I/O sub-system between Solros

(Phi-Solros) and stock Xeon Phi (Phi-Linux). We issued 512KB ran-

dom read operations using the fio benchmark to profile the file sys-

tem latency and ran our TCP latency benchmark with 64B message

size.

In particular, when the request size is larger than 512KB, the addi-
tional communication overhead between the data- and the control-
plane OSes over the PCIe bus is hidden and we achieve the max-
imum throughput of our NVMe SSD (2.4GB/sec for random read
and 1.2GB/sec for random write operations). As Figure 13(a) shows,
our zero-copy data transfer performed by the NVMe DMA engine
is 171× faster than the CPU-based copy in virtio, and our thin file
system stub spends 5× less time than a full-fledged file system on
the Xeon Phi. In summary, the Solros file system service achieves
the maximum throughput of an SSD and significantly outperforms
the conventional approach by as much as 14× and 19× for NFS
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of threads. Solros shows superior scalability over Xeon Phi with

the Linux kernel. However, Solros also shows performance degra-

dation as threads increase. That is because of the limitation of our

implementation. The common socket layer, under which our TCP

stub is implemented, becomes a scalability bottleneck.

and virtio, respectively. Also, it scales well without performance
degradation with concurrent threads.

6.1.3 Network Service. We evaluated Solros’ network service
using a micro benchmark for TCP latency and scalability. Figure 14
shows TCP latency with different message sizes using 61 concurrent
threads. We present the performance of a host for reference and
compare Solroswith the conventional approach running a full TCP
stack on Xeon Phi (Phi-Linux). A TCP client runs on a different
machine and is connected to the TCP server through a 100 Gbps
Ethernet. Results show that our approach has significantly lower
latency than the conventional one. Figure 1(b) shows the cumulative
distribution of response; the 99 percentile latency of host, Solros,
and Xeon Phi with Linux kernel are 41.2 usec, 103.1 usec, and 713
usec, respectively. As Figure 13(b) shows, our transport service is
8.7× faster and our thin network stub takes 10.9× less CPU time
than the stock network stack on Xeon Phi.

Figure 15 shows the scalability of our network service with a
varying number of threads. Compared to the latency at a single core,
latency at 61 cores increases 9.2× and 29.5× for Solros and Xeon
Phi with a full TCP stack, respectively. Solros shows significantly
higher manycore scalability than the stock Xeon Phi version. How-
ever, Solros’ scalability is limited because the TCP stub of Solros
is implemented as an INET protocol family under the common
socket layer, which becomes a scalability bottleneck.
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Figure 17: The performance of our image search server running on

a Xeon Phi co-processor and network bandwidth over time. Solros

version is 2× faster than the version with Linux kernel.

6.2 Application Benchmarks

Wenow consider two realistic I/O-intensive applications: text search
and image search. In particular, we investigate how Solros services
help to improve application performance and seamlessly scale with
multiple Xeon Phi co-processors.

6.2.1 Text Search. CLucene [1] is a text search engine written
in C++. To see how the Solros file system service affects the per-
formance of CLucene, we perform full-text indexing in parallel.
CLucene indexers, running on a Xeon Phi co-processor, read text
files from an NVMe SSD and then create index files on the NVMe
SSD. We created 122 indexer threads for our evaluation. The text
files are composed of 20,000 files in a directory (20 GB in total).
CLucene relies on read, write, and directory enumeration file system
calls for indexing files.

For comparison, we ran CLucene on three different file systems:
virtio and NFS for Linux on Xeon Phi, and Solros. As Figure 16
shows, CLucene with Solros significantly outperforms CLucene
with the virtio and NFS file systems. The I/O bandwidth shows
that the Solros file system are critical to achieving superior perfor-
mance by keeping these massively parallel co-processors busy. In
particular, virtio shows significantly lower performance even than
NFS on Linux. That is because the interrupt notification of virtio
has significant overhead as more concurrent threads perform IO
operations. This was also observed in Figure 11, where a single-
thread read in virtio is faster than multi-thread read operations.
Figure 19(a) shows the execution time breakdown and confirms that
IO performance is critical to achieve high performance by making
massively parallel co-processors fully busy.



EuroSys ’18, April 23–26, 2018, Porto, Portugal C. Min et al.

6.2.2 Image Search. For an image search server, we extended
the netferret content-based image similarity search in PARSEC
3.0 [16] and optimized its processing pipeline to remove scalability
bottlenecks with the large number of threads. The image search
server loads an image database from an NVMe SSD during its ini-
tialization and then receives a JPEG image from a client and finally
returns the five most similar images in the image database. It is com-
posed of three pipeline stages: 1) a single-threaded listen/accept
stage, 2) a multi-threaded recv and similarity comparison stage,
and 3) a multi-threaded send stage to send a list of similar images
to the client. The client also consists of three stages: 1) a single-
threaded scan stage to get a list of JPEG files in a directory, 2) a
multi-threaded send stage to send JPEG files one by one, and 3)
a multi-threaded output stage to get a response from the image
search server. We measure the time to query 1,000 JPEG images (5
GB in total).

We ran experiments in two configurations: Xeon Phi with the
Solros network service and Xeon Phi with Linux TCP stack. As
Figure 17 shows, the performance of the image server with Solros
network service is 2× faster than that with Linux TCP stack on
Xeon Phi. Figure 19(b) shows the execution time breakdown and
confirms that IO performance is critical to achieve high performance
by making massively parallel co-processors fully busy.

To see how the Solros network service helps scale-out of a
server application running on multiple co-processors, we ran our
image search server on multiple Xeon Phi co-processors up to four.
When two or more Xeon Phi co-processors are involved, the image
search server running on each Xeon Phi listens on the same port,
so the Solros network service treats it as a shared listen socket.
When a new client connection comes in, the Solros network service
forwards a connection to one of Xeon Phi co-processors in a round-
robin way. As Figure 18 shows, the performance of the image search
scales linearly as more Xeon Phi co-processors are used.

6.3 Scalability of Control-Plane OS

In the Solros architecture, the control-plane OS serves requests
from multiple data-plane OSes for performance and better global
coordination. However, one potential problem of this architecture
is that the control-plane OS would become a scalability bottleneck.
The scalability of the control-plane OS will be determined by the
scalability of its services, the performance of interconnect, PCIe, and
the performance of IO devices. To see how much the control-plane
OS in Solros is scalable, we ran the fio benchmark with random
read operations varying the numbers of Xeon Phi and NVMe SSD
pairs. As Figure 20 shows, Solros scales linearly at least up to four
pairs of Xeon Phi and NVMe SSD. For example, in the case that 61
threads per Xeon Phi issue 512KB read requests, Solros shows 2×,
2.9×, and 3.8× higher performance as we increase the number of
pairs from two to four, respectively. We note that the number of
installable Xeon Phis is limited by the number of PCIe slots.

7 DISCUSSION

Our prototype implementation relies on file system and network
stacks of the Linux kernel in a host. Thus, the I/O performance
of Solros is bounded by that of the Linux kernel. An alternative
implementation choice would be to use highly optimized user-space
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I/O stacks such asmTCP/DPDK [3, 35] for networking and SPDK [7]
for storage.
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One interesting future direction is to extend the design of Solros
to different types of co-processors other than Xeon Phi. The general-
ity of our approach will be decided by required hardware primitives
to run the data-plane OS and underlying assumptions of our de-
sign. Since all Solros services are built on top of its transport
service, Solros requires atomic instructions (i.e., atomic_swap and
compare_and_swap) used in our ring buffer and the co-processor’s
capability to expose some of its physical memory to the host to run
OS services in the data-plane OS. For isolation among co-processor
applications, currently Solros relies on MMU of Xeon Phi. It would
be interesting to incorporate software-based isolation [30, 51] to
Solros. We expect that the key performance characteristics that
Solros exploits will remain in the future. At a high level, Solros
relies on three performance assumptions: 1) cross-NUMA is ex-
pensive; 2) load/store is good for small data access and DMA is
good for large data access because of the high DMA setup cost;
and 3) using hardware resources (e.g., a host DMA engine) of faster
processors is better for performance.

8 RELATEDWORK

Solros emerged from a broader trend of heterogeneous comput-
ing and enabling fast I/O services in co-processors. This work
is inspired by previous research, including OS design for many-
core systems [12–15, 22, 24, 53, 59, 66] and heterogeneous sys-
tems [11, 51, 57], I/O in virtualization [10, 21, 25, 38, 64], I/O path
optimization [8, 50, 56, 65], and I/O support in GPGPUs [37, 58]. The
main difference between Solros and others is that the control-plane
OS running on a host takes active roles to make better system-wide
decisions and to exploit asymmetric hardware performance.
OSes for manycore systems. The data-plane and control-plane
in OS design were first introduced by Arrakis [53] and IX [15]. In
their work, the OS kernel takes the essential control-plane functions
such as scheduling and management of data-plane OSes. The kernel
involvement on the data-plane operations, such as network process,
is minimized. Arrakis and IX rely on a hardware virtualization
feature, SR-IOV and VT-x, respectively, for safe and isolated direct
access of IO devices. Giceva et al. [24] adopt this approach to design
a customized OS for database systems where performance-critical
portions run on the customized lightweight, compute-plane OS.
The control-plane OS in Solros plays an active role to optimize I/O
and make better sharing and load balancing decisions for multiple
co-processors. In high-performance computing, the mOS (multi-
OS) approach [22, 66] runs both a full-weight kernel (FWK) and
lightweight kernel (LWK) simultaneously. It reduces OS noise from
FWK by running applications on LWK for better performance; it
also supports rich system calls by delegating system calls from
LWK to FWK. Cerberus [59] and Popcorn Linux [13] replicate OS
kernels to multiple processing domains (e.g., a group of cores [59]
or a Xeon and Xeon Phi processors [13]) for better scalability or
seamless migration of a task. Their main focus is on providing a
single system image across multiple processing domains, which is
not the goal in Solros.
OSes for heterogeneous systems. Helios [51] is an OS for het-
erogeneous systems with multiple programmable devices. Access
to I/O services is done via message passing as with Solros. How-
ever, Helios requires hardware primitives, timer, interrupt, and trap,

which are not required in Solros. M3 [11] is a hardware/OS co-
design for heterogeneous manycore systems. It integrates cores and
memories into a network-on-chip and uses a per-core data transfer
unit (DTU) as a message-passing device. OS services are built using
message passing via DTU.
I/O path optimization. Hydra [65] optimizes complex layouts of
computations among programmable devices to maximize offloading
and bus usage. PTask [56] provides OS abstraction for GPGPU
to minimize data movement among devices. DCS [8] is a custom
hardware engine enabling direct communication among devices
(e.g., SSD and NIC). Unlike Solros, they do not take special care for
the idiosyncratic performance of PCIe and asymmetric processing
power in programmable devices.
I/O support in GPGPU. GPUfs [58] provides POSIX-like file sys-
tem API for GPGPUs, which requests file system calls to a host
via RPC. Unlike Solros, peer-to-peer data transfer with storage is
not considered. GPUnet [37] provides rsocket interface, which is a
socket-compatible data stream over RDMA/Infiniband, for GPGPUs.
In Solros, we provide a TCP socket API and focus on supporting
multiple co-processors including seamless scale-out using a shared
listening socket.
I/O virtualization. Delegating I/O operations to another OS is
a recurring design pattern in virtualization to ease the burden of
developing device drivers [21, 38, 64] or to specialize I/O operations
of JVM for high performance [10]. Since these approaches were
developed for homogeneous processor architectures, there is no
consideration to exploit heterogeneity.

9 CONCLUSION

This paper describes the design and implementation of Solros,
a data-centric OS architecture for heterogeneous computing. In
Solros, OS services, in particular I/O operations, are delegated to a
control-plane OS on a host so a data-plane OS on a co-processor is
thin and lightweight. The control-plane OS of Solros is designed
to take an active role to perform global coordination among de-
vices. We found that this separation of I/O operations is the best
use of specialized processors. To this end, our file system service
judiciously makes a decision whether to perform peer-to-peer com-
munication or host-side buffered I/O. Our network service provides
load balancing for the shared listening socket from multiple co-
processors using a user-provided rules. This functionality makes
the scale out of multiple co-processors easy and seamless. We im-
plemented the Solros prototype with Xeon Phi co-processors and
NVMe SSDs. Our evaluation results with micro benchmarks and
realistic I/O-intensive applications confirm that Solros provides
significant performance improvement over the conventional design:
for example, up to 19× performance improvement for file random
read operations and 7× decrease in 99th percentile latency for TCP
operations. The source code of Solros will be publicly available on
Github.
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