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Lock's research efforts and their use
Linux kernel lock

adoption / modificationDekker's algorithm (1962)
Semaphore (1965)
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Flat combining NUMA lock (2011)

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

HBO lock (2003)
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Issues with NUMA-aware primitives

● Memory footprint overhead
– Cohort lock single instance: 1600 bytes
– Example: 1–4 GB of lock space vs 38 MB of Linux’s 

lock for 10 M inodes

● Does not support blocking/parking behavior



  

Blocking/parking approach
● Under subscription

– #threads <= #cores

● Over subscription
– #threads > #cores

● Spin-then-park strategy
1) Spin for a certain duration

2) Add to a parking list

3) Schedule out (park/block)
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Issues with blocking 
synchronization primitives

● High memory footprint for NUMA-aware locks
● Inefficient blocking strategy

– Scheduling overhead in the critical path
– Cache-line contention while scheduling out



  

CST lock

● NUMA-aware lock
● Low memory footprint

– Allocate socket specific data structure when used
– 1.5–10X memory less memory consumption

● Efficient parking/wake-up strategy
– Limit the spinning up to a waiter’s time quantum
– Pass the lock to an active waiter
– Improves scalability by 1.2–4.7X



  

CST lock design

● NUMA-aware lock
➢ Cohort lock principle

 + Mitigates cache-line contention and bouncing

● Memory efficient data structure
➢ Allocate socket structure (snode) when used
➢ Snodes are active until the life-cycle of the lock

 + Does not stress the memory allocator



  

CST lock design

● NUMA-aware parking list
➢ Maintain separate per-socket parking lists for 

readers and writers

 + Mitigates cache-line contention in over-subscribed   
    scenario

 + Allows distributed wake-up of parked readers



  

CST lock design

● Remove scheduler intervention
➢ Pass the lock to a spinning waiter
➢ Waiters park themselves if more than one tasks are 

running on a CPU (system load)

 + Scheduler not involved in the critical path

 + Guarantees forward progress of the system



  

Lock instantiation

socket_listsocket_list

global_tailglobal_tail

Threads: ● Initially no snodes are 
allocated

● Thread in a particular 
socket initiates an 
allocation
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CST lock phase
CST lock instance

socket_listsocket_list

Threads: 

global_tailglobal_tail

● Allocate thread specific structure on the stack
● Three states for each node

– L  locked→
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– PW  parked / blocked / scheduled out waiter→
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CST lock phase: blocking/parking
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Implementation

● Implemented in the Linux kernel
● Structures modified

– File system: inode
– Memory management: mmap_sem

● Please see our paper
– Read-write lock
– Pseudo code

https://github.com/sslab-gatech/cst-locks



  

Evaluation

● Performance of locks in terms of scalability and 
memory footprint?

● Blocking/parking strategy effectiveness?

● Setup: 8-socket, 120-core NUMA machine



  

Case study: Psearchy
Jo

bs
/h

ou
r

● Overcomes memory footprint and scheduling overhead
● Uses 1.5–9.1X  less memory than the Cohort lock
● Improves throughput by 1.4–1.6X
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Effective parking strategy

● Better performance for both under- and over-
subscribed scenario

● Improves scalability by 1.3–3.7X
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Conclusion

● Two blocking synchronization primitives
– NUMA-aware mutex and read-write semaphore

● Dynamically allocated data structure
– Resolve NUMA-aware lock’s footprint issue

● Efficient spin-then-park strategy
– Scheduling-aware parking/wake-up strategy
– Mitigate scheduler interaction

Thank you!
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