
Scalable NUMA-aware
Blocking Synchronization Primitives

Sanidhya Kashyap, Changwoo Min, Taesoo Kim

'i

The rise of big NUMA machines

'i

The rise of big NUMA machines

'i

The rise of big NUMA machines

Importance of NUMA awareness
NUMA node 1 NUMA node 2

W1

W2

W3

W4

W5W6

L

File

W1 W2 W3 W4 W6 W5

NUMA oblivious

Importance of NUMA awareness
NUMA node 1 NUMA node 2

W1

W2

W3

W4

W5W6

L

File

W1 W2 W3 W4 W6 W5

NUMA oblivious

W1 W6 W2 W3 W4 W5

NUMA aware/hierarchical

Importance of NUMA awareness
NUMA node 1 NUMA node 2

W1

W2

W3

W4

W5W6

L

File

Idea:
Make synchronization primitives NUMA aware!

W1 W2 W3 W4 W6 W5

NUMA oblivious

W1 W6 W2 W3 W4 W5

NUMA aware/hierarchical

Lock's research efforts and their use
Linux kernel lock

adoption / modificationDekker's algorithm (1962)
Semaphore (1965)

Lamport's bakery algorithm (1974)
Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)

Hierarchical lock – HCLH (2006)
Flat combining NUMA lock (2011)

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

HBO lock (2003)

Lock's research efforts

Lock's research efforts and their use
Linux kernel lock

adoption / modificationDekker's algorithm (1962)
Semaphore (1965)

Lamport's bakery algorithm (1974)
Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)

Hierarchical lock – HCLH (2006)
Flat combining NUMA lock (2011)

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

HBO lock (2003)

NUMA-
aware
locks

Lock's research efforts

Lock's research efforts and their use
Linux kernel lock

adoption / modificationDekker's algorithm (1962)
Semaphore (1965)

Lamport's bakery algorithm (1974)
Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)

Hierarchical lock – HCLH (2006)
Flat combining NUMA lock (2011)

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

HBO lock (2003)

NUMA-
aware
locks

Spinlock TTAS→

Semaphore TTAS + block→

Rwsem TTAS + block→

Spinlock ticket→

Mutex TTAS + spin + block→

Rwsem TTAS + spin + block→

Spinlock ticket→

Mutex TTAS + block→

Rwsem TTAS + block→

Spinlock qspinlock→

Mutex TTAS + spin + block→

Rwsem TTAS + spin + block→

Lock's research efforts

1990s

2011

2014

2016

Lock's research efforts and their use
Linux kernel lock

adoption / modificationDekker's algorithm (1962)
Semaphore (1965)

Lamport's bakery algorithm (1974)
Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)

Hierarchical lock – HCLH (2006)
Flat combining NUMA lock (2011)

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

HBO lock (2003)

NUMA-
aware
locks

Spinlock TTAS→

Semaphore TTAS + block→

Rwsem TTAS + block→

Spinlock ticket→

Mutex TTAS + spin + block→

Rwsem TTAS + spin + block→

Spinlock ticket→

Mutex TTAS + block→

Rwsem TTAS + block→

Spinlock qspinlock→

Mutex TTAS + spin + block→

Rwsem TTAS + spin + block→

Lock's research efforts

1990s

2011

2014

2016

Adopting NUMA aware locks is not easy

Issues with NUMA-aware primitives

● Memory footprint overhead
– Cohort lock single instance: 1600 bytes
– Example: 1–4 GB of lock space vs 38 MB of Linux’s

lock for 10 M inodes

● Does not support blocking/parking behavior

Blocking/parking approach
● Under subscription

– #threads <= #cores

● Over subscription
– #threads > #cores

● Spin-then-park strategy
1) Spin for a certain duration

2) Add to a parking list

3) Schedule out (park/block)

under-subscription

Lo
ck

 th
ro

ug
hp

ut

→

#thread →

Blocking/parking approach
● Under subscription

– #threads <= #cores

● Over subscription
– #threads > #cores

● Spin-then-park strategy
1) Spin for a certain duration

2) Add to a parking list

3) Schedule out (park/block)

under-subscription

Lo
ck

 th
ro

ug
hp

ut

→

#thread →

over-subscription

Blocking/parking approach
● Under subscription

– #threads <= #cores

● Over subscription
– #threads > #cores

● Spin-then-park strategy
1) Spin for a certain duration

2) Add to a parking list

3) Schedule out (park/block)

under-subscription

Lo
ck

 th
ro

ug
hp

ut

→

#thread →

over-subscription

Spinning

Blocking/parking approach
● Under subscription

– #threads <= #cores

● Over subscription
– #threads > #cores

● Spin-then-park strategy
1) Spin for a certain duration

2) Add to a parking list

3) Schedule out (park/block)

under-subscription

Lo
ck

 th
ro

ug
hp

ut

→

#thread →

over-subscription

Spinning

Parking

Blocking/parking approach
● Under subscription

– #threads <= #cores

● Over subscription
– #threads > #cores

● Spin-then-park strategy
1) Spin for a certain duration

2) Add to a parking list

3) Schedule out (park/block)

under-subscription

Lo
ck

 th
ro

ug
hp

ut

→

#thread →

over-subscription

Spinning

Parking

Spin + park

Issues with blocking
synchronization primitives

● High memory footprint for NUMA-aware locks
● Inefficient blocking strategy

– Scheduling overhead in the critical path
– Cache-line contention while scheduling out

CST lock

● NUMA-aware lock
● Low memory footprint

– Allocate socket specific data structure when used
– 1.5–10X memory less memory consumption

● Efficient parking/wake-up strategy
– Limit the spinning up to a waiter’s time quantum
– Pass the lock to an active waiter
– Improves scalability by 1.2–4.7X

CST lock design

● NUMA-aware lock
➢ Cohort lock principle

 + Mitigates cache-line contention and bouncing

● Memory efficient data structure
➢ Allocate socket structure (snode) when used
➢ Snodes are active until the life-cycle of the lock

 + Does not stress the memory allocator

CST lock design

● NUMA-aware parking list
➢ Maintain separate per-socket parking lists for

readers and writers

 + Mitigates cache-line contention in over-subscribed
 scenario

 + Allows distributed wake-up of parked readers

CST lock design

● Remove scheduler intervention
➢ Pass the lock to a spinning waiter
➢ Waiters park themselves if more than one tasks are

running on a CPU (system load)

 + Scheduler not involved in the critical path

 + Guarantees forward progress of the system

Lock instantiation

socket_listsocket_list

global_tailglobal_tail

Threads: ● Initially no snodes are
allocated

● Thread in a particular
socket initiates an
allocation

Lock instantiation

socket_listsocket_list

global_tailglobal_tail

T1/S1T1/S1Threads:

Socket 1

socket_list [S1]socket_list [S1]

● Initially no snodes are
allocated

● Thread in a particular
socket initiates an
allocation

Lock instantiation

socket_listsocket_list

global_tailglobal_tail

T1/S1T1/S1Threads:

Socket 1

T2/S1T2/S1 T3/S1T3/S1

socket_list [S1]socket_list [S1]

● Initially no snodes are
allocated

● Thread in a particular
socket initiates an
allocation

Lock instantiation

socket_listsocket_list

global_tailglobal_tail

T1/S1T1/S1Threads:

Socket 1

Socket 2

T2/S1T2/S1 T3/S1T3/S1 T4/S2T4/S2

socket_list [S1]socket_list [S1]socket_list [S1, S2]socket_list [S1, S2]

● Initially no snodes are
allocated

● Thread in a particular
socket initiates an
allocation

CST lock phase
CST lock instance

socket_listsocket_list

Threads:

global_tailglobal_tail

● Allocate thread specific structure on the stack
● Three states for each node

– L locked→
– UW unparked/spinning waiter→
– PW parked / blocked / scheduled out waiter→

CST lock phase
CST lock instance T1/S1T1/S1

socket_listsocket_list

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

LL

Threads:

Socket 1

socket_list [S1]socket_list [S1]

global_tailglobal_tail

● Allocate thread specific structure on the stack
● Three states for each node

– L locked→
– UW unparked/spinning waiter→
– PW parked / blocked / scheduled out waiter→

CST lock phase
CST lock instance T1/S1T1/S1

socket_listsocket_list

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

Socket 1

socket_list [S1]socket_list [S1]

global_tailglobal_tail

T1

● Allocate thread specific structure on the stack
● Three states for each node

– L locked→

– UW unparked/spinning waiter→

– PW parked / blocked / scheduled out waiter→

CST lock phase
CST lock instance T1/S1T1/S1

socket_listsocket_list

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LL

Acquire global lock

LL

Threads:

Socket 1

socket_list [S1]socket_list [S1]

global_tailglobal_tail

T1

● Allocate thread specific structure on the stack
● Three states for each node

– L locked→

– UW unparked/spinning waiter→

– PW parked / blocked / scheduled out waiter→

CST lock phase
CST lock instance T1/S1T1/S1

socket_listsocket_list

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

nextnext

p_nextp_next

UWUW

T2/S1T2/S1 T3/S1T3/S1

Socket 1

socket_list [S1]socket_list [S1]

global_tailglobal_tail nextnext

p_nextp_next

UWUWT1 T2 T3

● Allocate thread specific structure on the stack
● Three states for each node

– L locked→

– UW unparked/spinning waiter→

– PW parked / blocked / scheduled out waiter→

CST lock phase

nextnext

p_nextp_next

LL

CST lock instance T1/S1T1/S1

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

socket_listsocket_list

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

nextnext

p_nextp_next

UWUW

T2/S1T2/S1 T3/S1T3/S1

Socket 1

Socket 2

socket_list [S1]socket_list [S1]socket_list [S1, S2]socket_list [S1, S2]

global_tailglobal_tail

T4/S2T4/S2

nextnext

p_nextp_next

UWUWT1 T2 T3

T4

● Allocate thread specific structure on the stack
● Three states for each node

– L locked→

– UW unparked/spinning waiter→

– PW parked / blocked / scheduled out waiter→

CST lock phase: blocking/parking

nextnext

p_nextp_next

LL

CST lock instance T1/S1T1/S1

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

socket_list
CV

socket_list
CV

waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

nextnext

p_nextp_next

UWUW

T2/S1T2/S1 T3/S1T3/S1

Socket 1

Socket 2

PWPWsocket_list [S1]
CV

socket_list [S1]
CV

socket_list [S1, S2]
CV

socket_list [S1, S2]
CV

global_tailglobal_tail

T4/S2T4/S2

nextnext

p_nextp_next

UWUW

T2/S1T2/S1

● Before scheduling out, waiters atomically
– Update the status from UW to PW
– Add themselves to the parking list

T1 T2 T3

T4

CST unlock phase
CST lock instance

T1/S1T1/S1

socket_list [S1]socket_list [S1]

global_tailglobal_tail
waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

nextnext

p_nextp_next

UWUW

T2/S1T2/S1

Socket 1

T1 T2

T3/S1T3/S1

nextnext

p_nextp_next

UWUWT3

Pass the lock to a spinning waiter

CST unlock phase
CST lock instance

T1/S1T1/S1

socket_list [S1]socket_list [S1]

global_tailglobal_tail
waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

nextnext

p_nextp_next

UWUW

T2/S1T2/S1

Socket 1

T1 T2

T3/S1T3/S1

nextnext

p_nextp_next

UWUWT3

Pass the lock to a spinning waiter

T2/S1T2/S1

CST unlock phase
CST lock instance

T1/S1T1/S1

socket_list [S1]socket_list [S1]

global_tailglobal_tail
waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

nextnext

p_nextp_next

UWUW

T2/S1T2/S1

Socket 1

T1 T2

T3/S1T3/S1

nextnext

p_nextp_next

UWUWT3

socket_list [S1]socket_list [S1]

global_tailglobal_tail
waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL
nextnext

p_nextp_next

UWUW

Socket 1

PWPWT1 T2
nextnext

p_nextp_next

UWUWT3

Pass the lock to a spinning waiter

T2/S1T2/S1

CST unlock phase
CST lock instance

T1/S1T1/S1

socket_list [S1]socket_list [S1]

global_tailglobal_tail
waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL

Threads:

nextnext

p_nextp_next

UWUW

T2/S1T2/S1

Socket 1

T1 T2

T3/S1T3/S1

nextnext

p_nextp_next

UWUWT3

socket_list [S1]socket_list [S1]

global_tailglobal_tail
waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

nextnext

p_nextp_next

LLLL
nextnext

p_nextp_next

UWUW

Socket 1

PWPWT1 T2
nextnext

p_nextp_next

UWUWT3

socket_list [S1]socket_list [S1]

global_tailglobal_tail
waiting_tailwaiting_tail

parking_tailparking_tail

UWUW

snode_nextsnode_next

LL
nextnext

p_nextp_next

UWUW

Socket 1

PWPWT2
nextnext

p_nextp_next

LLT3

Pass the lock to a spinning waiter

T2/S1T2/S1

Implementation

● Implemented in the Linux kernel
● Structures modified

– File system: inode
– Memory management: mmap_sem

● Please see our paper
– Read-write lock
– Pseudo code

https://github.com/sslab-gatech/cst-locks

Evaluation

● Performance of locks in terms of scalability and
memory footprint?

● Blocking/parking strategy effectiveness?

● Setup: 8-socket, 120-core NUMA machine

Case study: Psearchy
Jo

bs
/h

ou
r

● Overcomes memory footprint and scheduling overhead
● Uses 1.5–9.1X less memory than the Cohort lock
● Improves throughput by 1.4–1.6X

M
em

or
y

fo
ot

pr
in

t (
M

B)

0

40

80

120

160

0 20 40 60 80 100 120
#thread

Memory utilization

0

40

80

120

160

200

240

0 20 40 60 80 100 120
#thread

Vanilla

Cohort

CST

Throughput

Effective parking strategy

● Better performance for both under- and over-
subscribed scenario

● Improves scalability by 1.3–3.7X

0

40

80

120

160

200

240

1 2 4 8 16 32 64 128 256
#thread

Enumerate a directory (rwsem)

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 128 256
#thread

File creation (mutex)

Vanilla

Cohort

CST

M
 o

ps
 /

se
c

Conclusion

● Two blocking synchronization primitives
– NUMA-aware mutex and read-write semaphore

● Dynamically allocated data structure
– Resolve NUMA-aware lock’s footprint issue

● Efficient spin-then-park strategy
– Scheduling-aware parking/wake-up strategy
– Mitigate scheduler interaction

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

