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ABSTRACT
With increasing demand for big-data processing and faster in-memory
databases, cloud providers are moving towards large virtualized in-
stances besides focusing on the horizontal scalability.

However, our experiments reveal that such instances in popular
cloud services (e.g., 32 vCPUs with 208 GB supported by Google
Compute Engine) do not achieve the desired scalability with in-
creasing core count even with a simple, embarrassingly parallel
job (e.g., Linux kernel compile). On a serious note, the internal
synchronization scheme (e.g., paravirtualized ticket spinlock) of
the virtualized instance on a machine with higher core count (e.g.,
80-core) dramatically degrades its overall performance. Our finding
is different from the previously well-known scalability problem (i.e.,
lock contention problem) and occurs because of the sophisticated
optimization techniques implemented in the hypervisor—what we
call sleepy spinlock anomaly. To solve this problem, we design and
implement OTICKET, a variant of paravirtualized ticket spinlock that
effectively scales the virtualized instances in both undersubscribed
and oversubscribed environments.

1. INTRODUCTION
The cloud is often considered the abyss of horizontal scalability.

However, the advent of commodity and cost-effective multicore
machines allows cloud providers to aim at achieving not only hor-
izontal but also vertical scalability. For example, popular cloud
providers now enable provisioning of large virtualized instances
with higher vCPU count (up to 40 vCPUs) and larger memory space
(up to 488 GB).1 Not surprisingly, this trend will continue as the
number of cores becomes readily available on commodity CPUs
(e.g., up to 1,000 cores in SPARC M7 [27]). Following this trend,
recently Amazon announced the introduction of an X1 instance [9]
that comprises more than 100 vCPUs and 2 TB of memory, to cater
1 Amazon Web Service (AWS) provides 40 vCPUs with 60 GB of
memory, Google Compute Engine (GCE) provides up to 32 vCPUs
with 208 GB of memory, and Microsoft Azure provides 32 vCPUs
with 488 GB of memory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys’15 July 27-28, 2015, Tokyo, Japan
Copyright 2015 ACM
This is a minor revision of the work published in APSys’15, Proceedings
of the 6th Asia-Pacific Workshop on Systems, c⃝ACM ISBN 978-1-4503-
3554-6/15/07 http://dx.doi.org/10.1145/2797022.2797037.

0
20
40
60
80

100
120
140

4 8 12 16 20 24 28 32

bu
ild

s
/h

ou
r

#vCPUs

EC2–PVM
EC2–HVM

GCE
Azure

VM–16-core E5

Figure 1: Performance of a Linux kernel compile on high-end VMs on
Amazon EC2, Google Compute Engine, Microsoft Azure, and our in-house
machine with a similar hardware configuration. According to our experiment,
cloud environments (except Azure) with increasing vCPU count do not
guarantee scalable performance to end users.

to the increasing demands of large in-memory databases (Microsoft
SQL server [25] and processing engines [5, 35]).

Given these emerging large machines, the main question we
would like to answer in this paper is the following. What are the
scalability characteristics of popular cloud providers? Additionally,
is the underlying virtualization technology scalable enough to sup-
port VMs with hundreds of vCPUs in the future? We attempt to
answer these questions by performing a Linux kernel compile, an
embarrassingly parallel job that end users might expect to scale lin-
early by delegating the task to the cloud (e.g., elastically adjust the
vCPU count on demand). We then replicate the same environment
on our 80-core machine to project its scalability characteristics.

Figure 1 shows our experiment’s results on the largest instances
provided by three cloud services—Amazon Web Services (EC2), 2

Google Compute Engine (GCE), and Microsoft Azure (see Table 1).
We can clearly observe that all VMs provided by the cloud services
are scalable to 16 vCPUs. However, there is degradation after 16
vCPUs in the EC2 and GCE instances as the compilation plateaus.
This happens because both cloud providers use hyperthreads for
provisioning VMs with 32 vCPUs. We confirm this by replicating
the same experiment in our lab with a 16-core E5-2630 v3 machine
that has a similar hardware configuration as the VMs provided by the
cloud providers (Table 1). On the contrary, Azure scales well beyond
16 vCPUs, showing ideal scalability characteristics for 32 vCPUs
VM with respect to bare metal. Although there is no information
available online, we assume that Azure allocates more physical
cores (28) than logical ones (4), as the processor is a E5-2698B v3,
which consists of 14 physical cores.

On our 80-core machine, we use the highly optimized paravirtual-

2For an exact comparison, we use 32 vCPU VM rather than 36
vCPU one.
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Instances # Cores Sockets CPU Freq. Mem L3 Guest OS Kernel Virtualization Instance Cost / hour
(P / L) (GHz) (GB) (MB) type type ($)

AWS 16 / 16 1 2.8 60.0 25 Ubuntu 14.04 3.13 PVM / HVM c3.8xlarge 1.68
GCE 16 / 16 1 2.3 28.8 45 Ubuntu 15.04 3.19 PVM n1-highcpu-32 1.28
Azure 28 / 4 2 2.0 488.0 40 Ubuntu 15.04 3.19 HVM Standard G5 8.69

E5-2630 v3 16 / 16 2 2.4 64.0 20 Ubuntu 15.04 4.0.0 PVM / HVM - -
Table 1: Hardware and VM configurations of the Amazon EC2 (AWS), Google Compute Engine (GCE), Microsoft Azure (Azure), and our in-house machine
used in Figure 1 for comparison. The following experiments were performed on May 2, 2015.
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Figure 2: Performance of a Linux kernel compile on an 80-core machine.
We enabled hyperthreads per core, similar to the cloud environments, and
measured performance (builds/hour) on the host (marked Native), PVM,
HVM, and our own implementation, OTICKET. Unlike our speculation—
hyperthreads being the only performance bottleneck as we observed from Fig-
ure 1—we found serious performance degradation in the PVM-based hyper-
visor at higher core counts.

ized VM (PVM). Theoretically, the performance of PVM should be
the same or better than the hardware-assisted VM (HVM)3, as it can
provide better performance (e.g., I/O or network throughput) due
to the virtualization-aware interfaces. This trend should continue
even for a large number of cores. Unfortunately, this trend tends
to break, as Figure 2 pinpoints the scalability collapse for the in-
creasing vCPU count from 20 to 30. This result is counterintuitive
to what has been the case of paravirtualized instances and is only
visible when the number of vCPUs is greater than 20 physical cores.
We classify this problem as the sleepy spinlock anomaly, which is
visible only in VMs using paravirtual spinlocks [1]. This problem
does not stem from the cacheline contention, which has been ob-
served in commodity OSes [10] and which previous studies have
tried to reduce [10, 13, 14]. Instead, it arises from the introduction
of ticket-based spinlock implementation that guarantees fairness.
We address this problem by introducing two optimizations to the
existing ticket spinlock. We improve the performance of PVMs
for both undersubscribed and oversubscribed virtualized workloads
by modifying 21 lines of code (LoC) without breaking the fairness
guarantee.

In this paper, we make the following three contributions:
• We first reveal the scalability characteristics of three popu-

lar cloud services and develop an open source benchmark
framework to evaluate various workloads by extending the
benchmark tool, Mosbench [10], for the virtualized environ-
ment.

• We identify a scalability bottleneck called the sleepy spin-
lock anomaly in the paravirtual spinlocks for VMs with high
vCPU count, which degrades the performance of both under-
subscribed and oversubscribed environments.

• We propose OTICKET, a variant of the paravirtualized ticket
spinlock that scales in both undersubscribed and oversub-
scribed virtualized environments.

3HVM model only relies on the hardware for the VM execution.
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Figure 3: The issue of the lock-holder preemption (LHP) and lock-waiter
preemption (LWP) problem. Each circle represents a vCPU scheduled on a
CPU. The Sleep state is the preempted vCPU, whereas the Run state is the
running one. t is the ticket order in which the vCPUs are waiting for the
holder to release so that the waiters can acquire in FIFO order.

In the rest of the paper, we provide a high-level overview of the
paravirtual spinlock implementation (§2) and describe our two opti-
mizations in §3. §4 discusses the implementation of the optimization
for the ticket spinlock in the Linux kernel, and §5 evaluates our op-
timization performance. §6 discusses the limitation and potential
issues. Finally, §7 compares our approach with previous research
and §8 provides the conclusion.

2. BACKGROUND
Spinlock is a basic building block for synchronization primitives

inside the Linux kernel. As core count increases, the scalability
of the spinlock becomes important. A recent study shows that
non-scalable spinlock can cause performance collapse in an entire
system [10, 11]. Therefore, to ensure scalability and fairness [3,
11, 23], the key design choices are to minimize shared cacheline
contention as well as guarantee fairness, which is typically achieved
by preserving FIFO ordering, to prevent starvation with increasing
core count. The Linux kernel4 uses ticket spinlock for the fairness
guarantee and recently adopted queue-based spinlock for better
scalability [21]. A ticket spinlock is represented as a tuple—[head,
tail]. The current ticket holder holds the head, while a lock waiter
increments the tail and spins until the head becomes equal to the
tail. During the unlock phase, head is incremented for the next
lock waiter to acquire the lock.

In virtualized environments, the introduction of vCPUs compli-
cates the scalability of the busy-waiting synchronization primitives—

4The current Linux kernel version (v4.3), as of this writing,
uses qspinlock [21]. Like ticket spinlock, qspinlock guarantees
FIFO ordering for fairness and has additional optimization to re-
duce shared cacheline contention. Since both ticket spinlock and
qspinlock guarantee FIFO ordering for fairness, they are not free
from the sleepy spinlock anomaly. In §5.2, we discuss the sleepy
spinlock anomaly in qspinlock.
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Figure 4: The number of halt exits that occur during a Linux kernel com-
pile for two variants of spinlocks: in-stock ticket spinlock (PVM) and our
OTICKET implementation.

spinlocks. Figure 3 illustrates two anomalies, namely, lock-holder
preemption (LHP) and lock-waiter preemption (LWP). LHP occurs
when the vCPU that is holding the lock gets preempted and none
of the lock waiters make progress. On the contrary, LWP happens
due to the FIFO-ordered spinlock algorithms (like ticket spinlock),
in which none of the waiters make progress unless the exact next
waiter is scheduled.

To address the aforementioned issues, Intel added the Pause Loop
Exiting (PLE) feature to its processors [29]. In PLE, a processor
detects whether a task is contending on a spinlock. If a core keeps
executing pause instructions, which is called in every spin loop,
a guest OS gets trapped by the hypervisor. The hypervisor then
optimistically tries to yield the vCPU’s remaining time-slice to
the other preempted vCPU. Unfortunately, the hypervisor cannot
determine who is the current lock holder (when a lock is acquired)
or the next lock waiter (when a lock is released) by solely relying
on the PLE event. Therefore, HVM, which only relies on PLE, is
suboptimal in spinlock scalability.

From the software perspective, the paravirtual spinlock [16, 28]
tries to address these problems without any architectural support.
Unlike typical spinlock implementations, the paravirtual spinlock
consists of two paths, namely, fast-path and slow-path. In the fast-
path routine, a lock waiter first spins for a lock for fixed iterations.
It falls back to the slow-path if it fails to acquire the lock. In the
slow-path routine, the waiter issues a halt instruction, which gets
trapped by the hypervisor. The hypervisor schedules out the waiter
and voluntarily yields to the other vCPUs. During the unlock phase,
the holding vCPU wakes up the next waiter via a kick hypercall,
which notifies the hypervisor to re-schedule the waiting vCPU. Thus,
voluntary yielding alleviates the LHP problem and precisely waking
the next vCPU alleviates the LWP problem.

Surprisingly, our evaluation results in Figure 2 show sudden
performance collapse at a higher number of cores. This occurs due to
the increase in halt exits after 30 vCPUs (Figure 4). This is different
from both LHP and LWP. The performance collapse is triggered
due to high contention among the vCPUs for shared resources (e.g.,
critical section or memory bus). Therefore, the duration between
lock acquisition to release tends to be longer, and at a certain point
(30 vCPUs in this case), most vCPUs fail to acquire a lock during
optimistic spinning (i.e., fast-path) and trap to the hypervisor at
the same time (as evident after 20 vCPUs in Figure 4). From this
point, both of the switching overhead between the guest OS and the
hypervisor, and the communication cost to wake other vCPUs starts
dominating, which results in such a drastic performance collapse.

It is challenging to design and implement a spinlock that performs
well in virtualized environments, especially at higher core count.
In the rest of this paper, we present our opportunistic ticket spin-
lock (OTICKET), a variant of paravirtualized ticket spinlock, that

opportunistically tries to keep the waiters in the fast-path routine.

3. DESIGN
We propose opportunistic ticket spinlock (OTICKET), a new spin-

lock algorithm that is specifically designed for virtualized envi-
ronments. OTICKET’s design not only resolves the performance
anomaly as shown in Figure 2, but also addresses the LHP and LWP
problems, which are critical to achieving scalability in virtualized
environments.

Like the stock paravirtual ticket spinlock in the Linux kernel,
OTICKET is composed of a fast-path and a slow-path. Each vCPU
spins first and then voluntarily yields to other vCPUs if it is unable
to acquire the lock. In addition, to resolve LHP and LWP, we
introduce two schemes, opportunistic spinning and opportunistic
wakeup. To make the optimal decision on spinning and waking-up,
we exploit the distance between the lock holder and the lock waiter.
Since ticket spinlock guarantees strict FIFO ordering of waiters,
we assume that the time to acquire a lock is roughly proportional
to the waiter’s distance. With the help of both schemes, OTICKET
mitigates the problem of sleepy spinlock anomaly by keeping the
waiters in the fast-path, thereby decreasing the number of halt-exits
(Figure 4).
Opportunistic spinning. Determining the spinning duration of
the fast-path is challenging since it is dependent on the workload
and hardware combination. Longer spins unnecessarily hog the
CPU cycles, but shorter durations result in the performance collapse
shown in Figure 2.

In OTICKET, the spin duration is dynamically determined by the
distance between the lock waiter and its holder. Closer waiters
(i.e., waiters with smaller ticket distance from the holder) oppor-
tunistically spin for a longer duration, hoping to acquire the lock
sooner. If a lock is acquired while spinning, the vCPU can avoid
the problems of costly switching between the guest OS and hypervi-
sor. Conversely, farther waiters spin shorter and yield early to give
more opportunities for a lock holder to make progress. In OTICKET,
as the distance of a lock waiter increases, the spinning iteration
exponentially decreases (Lines 27–30 in Figure 5). Consequently,
this results in LHP problem mitigation, as only effective vCPUs get
scheduled by the hypervisor.
Opportunistic wakeup. Waking up a halt-ed vCPU takes signifi-
cant time [15], since the process involves notifying the hypervisor
which schedules the target vCPU. The unlocked vCPU uses hyper-
call for the notification to wakeup the target vCPU. To hide this
wakeup latency, OTICKET allows the unlocking vCPU to wake the
next N lock waiters in advance (Lines 65–68 in Figure 5). This
allows the waiters to fall back to the fast-path and subsequently
keep on spinning for their turn, thereby eagerly waiting for the
lock-holder to release the lock soon. Therefore, in conjunction with
opportunistic spinning, it partially mitigates the LWP problem.

4. IMPLEMENTATION
We implemented our opportunistic ticket spinlock in Linux kernel

v4.0 by replacing the paravirtual ticket spinlock in the KVM hyper-
visor with OTICKET. Our paravirtual spinlock is practical because of
its minimal modification (lines starting with + in Figure 5) without
any changes to the size of its lock structure. The design of OTICKET
can be easily used by other open-source hypervisors such as Xen [8].
In our locking function, arch_spin_lock(), __ticket_distance()
calculates the distance between a lock holder and a waiter (Lines
6–11) before spinning, and __ticket_lock_spin-ning() makes its
running vCPU yield to other vCPUs by executing a halt instruction
(Line 43). In our unlock function, arch_spin_unlo-ck(), OTICKET
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1 #define SPIN_THRESHOLD (1 << 15)
2 #define SPIN_MAX_THRESHOLD (1UL << 34)
3 #define TICKET_QUEUE_WAIT (18)
4 #define OPPORTUNISTIC_WAKEUP_NCPU (4)
5

6 + static __always_inline
7 + unsigned int __ticket_distance(__ticket_t head, __ticket_t tail)
8 + {
9 + return (tail - (head & ~TICKET_SLOWPATH_FLAG)) \

10 + / TICKET_LOCK_INC;
11 + }
12

13 static __always_inline
14 void arch_spin_lock(arch_spinlock_t *lock)
15 {
16 register struct __raw_tickets inc = {.tail = TICKET_LOCK_INC};
17 + unsigned int dist;
18

19 /* default threshold set in Linux */
20 u64 threshold = SPIN_THRESHOLD
21

22 /* try locking */
23 inc = xadd(&lock->tickets, inc);
24 if (likely(inc.head == inc.tail))
25 goto out;
26

27 + /* opportunistically determines spinning threshold */
28 + dist = __ticket_distance(inc.head, inc.tail);
29 + if (dist < TICKET_QUEUE_WAIT)
30 + threshold = SPIN_MAX_THRESHOLD >> (dist - 1);
31

32 for (;;) {
33 /* spinning (fast path) */
34 + u64 count = threshold;
35 do {
36 inc.head = READ_ONCE(lock->tickets.head);
37 if (__tickets_equal(inc.head, inc.tail))
38 goto clear_slowpath;
39 cpu_relax();
40 } while (--count);
41

42 /* yield (slow path) */
43 __ticket_lock_spinning(lock, inc.tail);
44 }
45

46 clear_slowpath:
47 __ticket_check_and_clear_slowpath(lock, inc.head);
48 out:
49 barrier();
50 }
51

52 static __always_inline
53 void arch_spin_unlock(arch_spinlock_t *lock)
54 {
55 if (TICKET_SLOWPATH_FLAG &&
56 static_key_false(&paravirt_ticketlocks_enabled)) {
57 __ticket_t head;
58

59 head = xadd(&lock->tickets.head, TICKET_LOCK_INC);
60

61 if (unlikely(head & TICKET_SLOWPATH_FLAG)) {
62 + u8 count;
63 head &= ~TICKET_SLOWPATH_FLAG;
64

65 + /* opportunistic wakeup */
66 + for (count = 1; count <= OPPORTUNISTIC_WAKEUP_NCPU;
67 + ++count)
68 + __ticket_unlock_kick(lock,
69 + (head + count * TICKET_LOCK_INC));
70 }
71 } else
72 __add(&lock->tickets.head,
73 TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);
74 }

Figure 5: Our opportunistic ticket spinlock code implemented in the Linux
kernel 4.0 [1]. It opportunistically increases the spinning threshold from
the static threshold in the stock Linux, and opportunistically wakes up more
vCPUs near their ticketing turn.
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Figure 6: Performance impact of each optimization for the Linux kernel
compile using modified paravirtualized spinlock interface. OTICKET is the
implementation shown in Figure 5. Opportunistic wakeup and spinning are
the individual ticket spinlock implementations that constitute OTICKET.

opportunistically wakes up vCPUs (Lines 65–69). The waking-up
function, __ticket_unlock_kick(), is implemented using a hyper-
call. Besides this, we do not modify any other kernel functions for
the OTICKET implementation.

5. EVALUATION
We evaluate OTICKET by answering the following four questions:
• Does OTICKET improve the scalability of PVM? (§5.1)
• Does any other spinlock implementation solve the scalability

issue? (§5.2)
• Does OTICKET help to improve the performance of VMs in

an oversubscribed environment? (§5.3)
• Is the design of OTICKET generic across other multicore ma-

chines? (§5.4)
Experimental setup. We created VBENCH5, a fork of Mos-
bench [10], to evaluate the scalability of the host and hypervisor
while running multiple virtual machines. For our evaluation, we
chose three benchmarks from VBENCH: Linux kernel compilation
(LKC), EXIM [4], and METIS [22].

Linux kernel compilation (LKC) is an embarrassingly parallel job
in which each process independently compiles source files. To hide
potential IO latency, we set the number of parallel jobs of kernel
compile to twice the number of cores, both for VM and host.

EXIM is the most deployed mail-server [18]. For each SMTP
connection, EXIM forks two processes for message processing and
delivery. Since the processing and delivery of each message is
independent, it is also an embarrassingly parallel job. We use 160
clients to deliver 100 messages continuously in a single connection
for 15 seconds.

METIS is a map-reduce library for a single multicore server. In
our experiments, METIS is used with an application for generating
inverted indices, which mostly stresses the kernel’s memory alloca-
tor and soft page-fault handling component, but it does not suffer
from spinlock contention. We chose METIS to show that OTICKET
does not have an overhead in the case of low spinlock contention.

All of these workloads scale almost linearly with increasing core
count without any virtualization. To isolate the effect of I/O, we run
these benchmarks on top of the memory-backed file system, tmpfs,
while pre-loading all of the input source files before measuring
the performance, if required. Also, to isolate the effect of process
migration at host, we pin each vCPU to each physical core.

5.1 Performance Analysis
Figure 2 shows that the stock ticket spinlock (PVM) starts suf-

fering after 30 vCPUs and its performance completely collapses at
5https://github.com/sslab-gatech/vbench

12

https://github.com/sslab-gatech/vbench


0k
10k
20k
30k
40k
50k
60k
70k
80k
90k

20 40 60 80 100 120 140 160

m
es

sa
ge

s
/s

ec

#vCPUs

Native
PVM
HVM

OTICKET

(a) EXIM

0
200
400
600
800

1000
1200
1400
1600

20 40 60 80 100 120 140 160

jo
bs

/h
ou

r

#vCPUs

Native
PVM
HVM

OTICKET

(b) METIS
Figure 7: Performance impact of OTICKET compared to PVM and HVM while running EXIM and METIS benchmarks on our 80-core machine.
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Figure 8: The number of halt-exits for both EXIM and METIS. For EXIM, halt-exits are per message whereas for METIS, they are per the whole run.

40 vCPUs. In contrast, OTICKET achieves consistent performance
improvement until 80 vCPUs (all physical CPUs assigned) and
does not show equivalent performance collapse in PVM until 160
vCPUs (all hardware threads assigned). Figure 4 illustrates the dif-
ference between OTICKET and PVM as the number of halt-exits of
the PVM starts soaring after 30 vCPUs, but remains almost constant
for OTICKET. It reveals that the voluntary sleeping optimization
for the virtualized environments can result in performance collapse
(sleepy spinlock anomaly) for the kernel-intensive workloads, which
OTICKET tries to avoid.

Figure 6 shows the effectiveness of each scheme. OTICKET pro-
vides the best of both worlds—opportunistic spinning and oppor-
tunistic wakeup, by performing slightly better than both and the best
at 80 vCPUs (consisting of only physical cores). The opportunistic
spinning approach prohibits the nearest waiters from going to sleep,
thereby immediately acquiring the lock. Both approaches start de-
grading after 110 cores because of the large number of waiters that
are going to sleep from both the use of logical cores and increasing
the contention among vCPUs.

Figure 7 shows the performance of both EXIM and METIS on the
host as well as on the different configuration of the guest. OTICKET
outperforms PVM since from 30 cores onward PVM starts to suffer
from the sleepy spinlock anomaly. This happens because EXIM
spends around 70% of its time in the kernel and around 20% of
the time in spinlock contention for the new inode allocation. As
shown in Figure 8, this contention severely increases the amount
of halt-exits for the PVM, which increases from 0.5 per message at
20-core to 72 at 70-core and remains consistent. Compared to PVM,
OTICKET only has 7 halt-exits per message at 70-core. OTICKET
reduces the number of halt-exits by 10X with both of its techniques.
The increase in halt-exits that are observed with increasing core
count are due to the contention on the blocking synchronization
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Figure 9: Linux kernel build performance on 80-core for various paravir-
tual spinlock implementations: Opportunistic ticket spinlock (OTICKET),
ticket spinlock with longer spinning (Longer spinning), fine-grained control
of spinning period (ITICKET), and a MCS variant queue-based spinlock
(qspinlock).

primitives (e.g., mutex and read-write semaphore) which hampers
all of the configuration, even including the native.

In the case of METIS, each of the configurations performs the
same, thereby illustrating that OTICKET has the same performance
impact as that of PVM, as it does not harm the scalability of the ap-
plication in the non-contending scenario. Figure 8b further confirms
OTICKET’s negligible effect on METIS performance, as the amount
of halt-exits remains almost the same for both PVM and OTICKET.

5.2 Comparison with Design Alternatives
We explore three design alternatives—(1) longer spinning, (2)

fine-grained control of the spinning period (ITICKET), and (3) queue-
based spinlock (qspinlock) for further reducing cacheline conten-
tion—and compare their performance to OTICKET and the stock
ticket spinlock (PVM). We use LKC for comparing other design
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Figure 10: Performance impact of OTICKET compared to PVM and HVM while running LKC, EXIM, and METIS benchmarks in an over-committed
environment on an 80-core machine (2 vCPUs per core). Each benchmark is co-scheduled with the same instance on another exact VM instance. For the LKC
workload, we also have included longer spinning performance to show its adverse effect in an oversubscribed scenario.

decisions.
To spin longer, we modify the default spinning threshold of the

stock ticket spinlock to the maximum (SPIN_MAX_THRESHOLD in Fig-
ure 5) expecting longer spinning to reduce halt-exits significantly.

We further modify the existing ticket spinlock structure by intro-
ducing a new variable for holding the threshold value for each lock
structure. The default spinning threshold value (SPIN_THRES-HOLD
in Figure 5) is increased twice whenever a contended thread of the
same lock instance ends up in the slow-path. This allows more
fine-grained control of the spinning duration per spinlock. We call
this ticket spinlock implementation ITICKET.

Practitioners are leaning towards using variants of MCS lock [3]
for better scalability in large NUMA machines by further reducing
cacheline contention. In practice, Linux kernel recently adopted
a space-optimized variant of MCS lock, called queue-based spin-
lock [21] or qspinlock, which maintains the same size of the spin-
lock instance as one of the ticket spinlock (4 bytes).

Figure 9 illustrates that the longer spin approach performs slightly
better than OTICKET as the number of cores increases from 130
cores. This happens because all waiters are spending more time
spinning than going to the slow-path. But, as expected, this pays the
price in an oversubscribed environment (Figure 10a).

The performance of ITICKET spinlock implementation is similar
to OTICKET but adds a significant overhead of 2 bytes at every place
it is being used. In practice, increasing the size of a spinlock data
structure has serious repercussions to tightly packed container data
structures such as page structures.

Figure 9 shows the performance of three alternatives against
the existing spinlock implementation (PVM). We can observe that
qspinlock also suffers from the sleepy spinlock anomaly, as there
is no improvement in the virtualized environment. This proves
that the anomaly can occur for any spinlock algorithm that guar-
antees ordering and also relies on the slow-path in the virtualized
environment.

5.3 Performance in an Over-Committed Host
Another interesting aspect of the spinlock design for virtualized

environments is the performance behavior in an over-committed
setting (i.e., running more vCPUs than physical cores). Although the
highly over-committed case will be avoided using virtual machine
migration, it is desirable to have good performance in the over-
committed case to cope with the overlapping peaks among VMs.

Figure 10 shows the performance of each workload running inside
a VM that has been co-scheduled with another VM, simultaneously
running the same workload.

OTICKET outperforms the existing ticket spinlock in the case

the benchmark suffers from the sleepy spinlock anomaly (LKC
and EXIM), and its performance is equivalent to PVM for the non-
contending case (METIS).

We further use the alternative longer spinning approach with
LKC (refer Figure 10a). This proves that, although longer spinning
is advantageous for under-committed environments, it drastically
degrades the performance in the over-committed setting. Longer
spinning is helpful until 40 cores, but starts degrading due to the
wasting of CPU cycles.

PVM suffers from the sleepy spinlock anomaly as well as con-
tention with other vCPUs since another VM is performing the same
job. This inherently comes from the strict FIFO ordering and con-
tention on blocking synchronization primitives (for EXIM) which
severely limits its performance. On the other hand, OTICKET suffers
from the same problem, but performs better than these two tech-
niques. Our opportunistic wakeup scheme partially hides the latency
of other waiters by waking them up beforehand. This also allows
the vCPU to schedule other tasks, thus allowing the VM to progress
further.

The HVM configuration performs better than OTICKET and PVM
for LKC because it does not rely on the paravirtual spinlock in-
terface, thereby not suffering from the sleepy spinlock anomaly.
However, its performance starts suffering from 60-core onward be-
cause of the I/O thread contention (54%), which is not observed
in the case of others, since the sleepy spinlock anomaly hides this
contention for both PVM and OTICKET.

For EXIM, HVM’s performance degrades more than PVM and
OTICKET after 60-core. This occurs because of the contention at the
hypervisor level during vCPU scheduling.

We observed that all three configurations perform the same in the
case of METIS, which neither suffers from sleepy spinlock anomaly
nor performs any heavy kernel-based operations, unlike other bench-
marks.

5.4 Machine Independence
We use our 32-core machine (64-core with HT enabled) to fur-

ther confirm the sleepy spinlock anomaly as well as the impact of
OTICKET. Figure 11 shows the performance evaluation of PVM,
HVM, and OTICKET for all three workloads. All three workloads
illustrate the same trend as that seen in case of 80-core (Figure 2
and Figure 7), and both LKC and EXIM suffer from the sleepy spin-
lock anomaly. Here, as well, OTICKET solves this anomaly with its
two effective schemes that try to keep the waiters in the fast path.
Similarly, METIS performance in both host and guest remains the
same as that observed for 80-core.
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Figure 11: Performance impact of OTICKET compared to PVM and HVM for EXIM, LKC, and METIS on our 32-core machine with HT enabled.

6. DISCUSSION AND LIMITATIONS
The paravirtualized interfaces often improve the VM’s perfor-

mance [1, 17, 28], as they provide more control to the guest execu-
tion by enabling coordination between the guest OS and hypervisor.
However, we observe an anomaly in VMs with high core count
leveraging these paravirtualized interfaces, which we try to fix via
OTICKET. However, OTICKET does not solve the issue found in
either LKC’s oversubscribed case nor in EXIM. We believe that
more coordination is necessary between the guest and hypervisor to
have the scalability trend comparable to the host. Two possible solu-
tions are to tightly integrate PLE with OTICKET’s logic or perform
co-scheduling vCPUs [19] at the time of yielding. Both solutions
may further improve the performance and decrease the performance
gap between the bare metal and virtualized executions. These ap-
proaches may not only solve the problem of performance drop for
over-subscribed machines with high core count, but also should
improve the performance of EXIM representative workloads.

7. RELATED WORK
VM scheduling and synchronization have a serious impact on the

performance of a VM. There have been prior significant efforts to
improve the performance of VM scheduling.
Spinlocks for virtualized environment. Uhlig et al. [33] defined
and addressed the lock synchronization issue (LHP) in the virtual-
ized environment via scheduling hints. Later, paravirtual hooks were
used in the spinlock [16] for notifying the hypervisor to block the
vCPU after it has exhausted its busy wait threshold. This approach,
however, prevents LHP for smaller core counts. Besides LHP, two
different problems have been identified: lock-waiter preemption
(LWP) [26] and blocked-waiter wakeup problem (BWW) [15, 30].
BWW occurs when the workload uses blocking synchronization in
an over-subscribed environment.

From the hardware perspective, processor manufacturers added
an execution control to the VMCS structure—Pause Loop Exiting
(PLE) [29]—that notifies the hypervisor of the waiter via VM exit.
PLE partially solves the LHP problem but can also result in false
positives. Ahn et al. [7] proposed a solution on the basis of a
smaller time slice to resolve both interrupt handling and LHP-LWP
problems. They proposed an LLC-based architectural solution to
resolve the large overhead. This approach will result in a huge
overhead for VMs with a high core count, and degradation might
remain consistent.

There have been other alternatives of spinlock implementations
such as MCS locks [3, 12, 21] that are considered a better alternative
to ticket spinlock implementation. Unfortunately, the issue of sleepy
spinlock anomaly stems in spinlock implementations following strict
FIFO ordering. Therefore, this problem will continue to be seen in

the queue-based spinlock for virtualized environments.
Virtualization overhead and scheduling. There have been several
studies on the virtualization overhead due to software-hardware
redirection [6, 30] and co-scheduling issues [15, 16, 24, 26]. In the
vCPU scheduling space, hypervisors, such as VMware, adopted the
co-scheduling of multiple vCPUs [2] to deal with guest and VMM
synchronization. This was further improved by using an adaptive
scheme for scheduling the vCPUs [7, 19, 33, 34]. Later, Orathai et
al. [32] came up with the approach of dedicating the vCPU with
a physical CPU rather than co-scheduling. Furthermore, Song et
al. [31] used the approach of vCPU ballooning on top of physical
CPUs, which avoided the problem of double scheduling.

8. CONCLUSION
In this paper, we analyze the scalability performance of a VM on

an 80-core machine for the Linux kernel compilation benchmark.
Our study suggests that in addition to cacheline contention, the
use of spinlock, which guarantees strict FIFO ordering, is another
culprit for the performance degradation. We identify this issue for
VMs with large vCPU count and provide a variant of the ticket
spinlock implementation to address this problem. The VBENCH
source code is publicly available at https://github.com/sslab-
gatech/vbench and is easily extensible to identify more issues
with respect to the virtualization for large multicore machines. Our
initial idea of the spinlock design has been already acknowledged
and adopted by the qspinlock developer [20], which will be in the
mainline in the next kernel version.

In the future, we would like to devise a generic OTICKET design
that is not susceptible to increasing core count and can perform
equivalently or better than HVM in an over-subscribed environment
for workloads relying on busy-waiting synchronization. We will
further extend our insight to other synchronization primitives with
respect to virtualization.
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