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Abstract
In recent years, operating systems have become increas-
ingly complex and thus more prone to security and per-
formance issues. Accordingly, system updates to address
these issues have become more frequently available and
increasingly important. To complete such updates, users
must reboot their systems, resulting in unavoidable down-
time and further loss of the states of running applications.

We present KUP, a practical OS update mechanism that
employs a userspace checkpoint-and-restart mechanism,
which uses an optimized data structure for checkpoint-
ing on disk as well as a memory persistence mechanism
across the update, coupled with a fast in-place kernel
switch. This allows for instant kernel updates spanning
across major kernel versions without any kernel modifica-
tions.

Our evaluation shows that KUP can support any type
of real kernel patches (e.g., security, minor or even ma-
jor releases) with large-scale applications that include
memcached, mysql, or in the middle of the Linux kernel
compilation, unlike well-known dynamic hot-patching
techniques (e.g., ksplice). Not only that, KUP can update
a running Linux kernel in 3 seconds (overall downtime)
without losing 32 GB of memcached data from kernel ver-
sion v3.17-rc7 to v4.1.

1 Introduction
Today, computer users routinely update their operating
systems either to patch security vulnerabilities, fix bugs,
or add a new set of features to the existing system. Unfor-
tunately, to fully incorporate a new update, users have no
choice but to restart their systems, which results in the loss
of the running states of applications. This unavoidable
disruption not only brings inconvenience to end users, but
also causes an adverse financial impact on business.For
example, updating a memcached [57] server at Facebook
that caches around 120 GB data in 144 GB RAM [24] re-
quires a prolonged warm-up phase of 90-100 minutes [30].
The more critical problem is when a system update fails.
Such failure often leads to additional downtime or main-
tenance costs thereafter, resulting in an immediate loss of
active customers [20, 21]. Still, even with the unavoidable
disruption and risks involved in update failures, system
updates are necessary to promptly mitigate the known
security issues and resolve critical bugs that might hurt
the correctness of operations [8, 25, 44, 68, 71].

To solve these problems, two large sets of techniques
are used in practice: dynamic hot-patching and rolling
updates. Dynamic hot-patching (or live update) [4, 67,
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Figure 1: Limitation of dynamic kernel hot-patching using
kpatch. Only two successful updates (3.13.0.32→34 and
3.19.0.20→21) out of 23 Ubuntu kernel package releases. X-
axis represents before-version and after-version, and dotted bars
represent failures in executing kpatch. Each failure case rep-
resents the following legends: build/diff errors—kpatch failed
during a build and diff processes; # static local—a patch mod-
ifies a value of static local variables; # layout error—a patch
changes a layout of a data structure.

73] directly applies patches to the running kernel. As a
result, system updates can be performed without incurring
application downtime. However, dynamic hot-patching
is inherently limited to patches that do not semantically
modify data structures. Therefore, it is commonly used
to apply simple security patches that contain minor code
changes. For instance, kpatch [67], a popular dynamic
update tool developed by Red Hat, was able to support 2
out of 23 minor updates over a year of Ubuntu’s kernel
releases (see Figure 1).

Rolling updates [20, 60] are another viable technique
for large-scale systems. In rolling updates, system admin-
istrators apply an update to a small group of machines;
if there is no failure, they apply the same update to the
rest of the machines in the data center. This helps admin-
istrators minimize the risk of update failures and system
downtime. However, this process requires careful plan-
ning to minimize the disruption of running services due
to the inevitable downtime of applications.

There are several research projects that attempt to solve
the OS update problem either by proposing new OS con-
struction [5, 7, 23, 65, 80], or by providing a transfer
function for system updates [28]. In order to keep their in-
ternal states switchable, such OSes require radical design
changes, thereby making these modifications impractical
for the commodity OSes [19, 69].

To address these issues, we present KUP—a new up-
date mechanism that allows for prompt kernel updates
without modifying a commodity OS. KUP incorporates
application checkpoint-and-restart (C/R) for saving and
restoring the application states before and after the update,
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and an in-place kernel switch to quickly boot into a new
kernel. This allows KUP to minimize the downtime of
running applications during the system update. Unlike
dynamic hot-patching mechanisms, KUP can perform a
full system update regardless of the complexity of up-
dates, and thus can support a broader range of system
updates, including security and bug fixes, the addition of
new features, and even major kernel upgrades. To address
update failures, KUP provides a safe fallback mechanism
that provides a mechanism to restore the original system,
checkpointed right before the update.

KUP works by leveraging the OS provided infrastruc-
ture such as procfs, ptrace system call [37] for obtain-
ing information during the checkpoint of an application,
and process forking (clone, fork) mechanism along with
other system calls [15, 37] and netlink sockets to re-
store the application after update. To enable an effi-
cient, userspace-based C/R of an application during an
update, we design an efficient checkpointing storage for-
mat that improves both the checkpoint size and KUP’s
performance. However, the aforementioned solution of
KUP still ends up storing RAM data on the disk, which is
not suitable for disk-less systems [30, 57].1 We further ex-
tend KUP and make it generic enough to support disk-less
systems by proposing a memory persistence mechanism,
which we implement via binary patching and dynamic
OS instrumentation. This approach is complementary to
our userspace solution.

This paper makes the following three contributions:

• We design a simple, yet robust update mechanism
by using application C/R, and implement an open
source prototype of KUP.

• We show KUP’s effectiveness by providing an in-
depth analysis of the proposed techniques with real
applications, micro-benchmarks and full software
stack representing generic data center application.

• We devise, implement and evaluate a safe fall-
back mechanism for KUP that can be easily real-
ized through application C/R and an in-place kernel
switch.

The rest of this paper is organized as follows. §2 com-
pares KUP with previous work. §3 gives the high-level
ideas of KUP’s approach to instant kernel update. §4
points out the challenges and §5 describes our design.
§6 explains our implementation and §7 evaluates KUP’s
performance. Lastly, §8 discusses its limitations and po-
tential optimizations and §9 concludes.

1The memcached servers at Facebook are disk-less and they keep
everything in memory.

2 Related work
In this section, we compare KUP’s approach to previous
studies in four areas: dynamic hot-patching, new OS
designs, live migration, and application C/R for updates.

Dynamic hot-patching. Industries rely on solutions
such as Ksplice [4], kpatch [67], and KGraft [73] to
promptly mitigate the security vulnerabilities without
any significant outage of their production systems. How-
ever, as shown in Figure 1, the hot-patching techniques
have critical limitations, especially in handling data lay-
out changes, thus making it impossible to guarantee the
safety of live updates. Previous studies have proposed
dynamic software update schemes on event-driven sys-
tems [1, 27, 28, 36], object oriented languages [39, 63]
and even C language [4, 35, 53, 54, 56] including formal
proofs [34, 55, 72].

However, unlike previous update techniques, KUP re-
lies on a whole kernel switch to apply any kind of patch,
regardless of its complexity. KUP allows for system-wide
live updates without modifying programs or tracking their
state changes, unlike previous works [19, 35].

New operating system designs for live update. An-
other approach is to design a new OS with well-defined
abstractions between interfaces and implementations so
that each component can be replaced online without dis-
ruption. Representative examples include Microkernel
(e.g., exokernel [23], K42 [5, 7, 70], Barrelfish [6, 80])
and LibOS (e.g., Drawbridge [65]). In particular, Pro-
teos [28] based on MINIX 3, and a Linux variant [69],
are designed to update their components online and also
transform internal data structures to adopt the updated ker-
nel. Unfortunately, with a large amount of code changes
(e.g., new features), constructing the state transfer func-
tions either requires manual effort or is infeasible in many
cases [5, 7, 11, 28, 69, 70].

Autopod [66] and the work by Siniavine et al. [69] are
closest to KUP. Autopod uses a namespace mechanism
for process decoupling and migrating applications across
machines, whereas Siniavine et al. provides a kernel space
C/R mechanism coupled with an in-place kernel switch to
update the OS, and employs techniques similar to those
of Otherworld [19]. The work by Siniavine et al. heavily
modifies various kernel subcomponents to checkpoint
and restore the applications entirely in the kernel space
without any user intervention. In contrast, Otherworld
tries to recover applications from the kernel failures by
transferring them to the new kernel via an in-place kernel
switch.

Unlike these studies, KUP achieves its goal of instantly
updating the systems via userspace C/R and an opti-
mized in-place kernel switch without modifying the kernel
source. KUP faces a different set of challenges, such as
(a) how to efficiently checkpoint storage data structure for
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Figure 2: Overview of KUP’s updating procedures. KUP first checkpoints user’s processes 1 , and archives their snapshots 2 . After
checkpointing selected processes in a user’s current session, KUP replaces the old kernel to the new kernel image 3 , and finally
switches to the new kernel 4 . After the new kernel boots, KUP first initializes its system daemons 5 , and finally restores snapshots
of user applications 6 .

effectively using both checkpoint and restore techniques,
and (b) how to implicitly modify the kernel functional-
ity to remove the redundant memory copy phase from
the application C/R, which we do via a binary patching
mechanism. KUP leverages the kernel-exposed userspace
information to extract the kernel-resident data-structures’
data via procfs, netlink sockets and system calls [15].
This makes the process checkpointing independent of
both the kernel update and the checkpoint format.

Application C/R. The area of application C/R has
been explored in various contexts: object-oriented lan-
guages [50, 77], single process [61, 64], multiple pro-
cesses [2, 49], even across multiple computers in a dis-
tributed environment [43, 79]. It has also been explored
solely for an optimized restoration scheme [81]. In prac-
tice, application C/R has been used for bootstrapping
system startup [51], achieving fault-tolerance and perfor-
mance in HPC [26, 33], debugging [61, 77], and even for
recovering system integrity [45–47].

Unlike these approaches, KUP can retrofit the known
application C/R scheme for live updates. Currently, it
relies on criu [22] for application C/R because of its
mature code base and stable checkpointing mechanism
without modifying the kernel. General application C/R
approaches focus on reducing the quiescence period,
but KUP suffers from a memory snapshotting bottle-
neck, since the kernel provides the quiescence mecha-
nism via the ptrace system call [37] for KUP to leverage.
KUP uses incremental checkpoint [64] and on-demand
restore [58] to reduce the downtime during application
C/R. Unlike libckpt [64], KUP does not require any mod-
ifications to applications and uses a new file format to
effectively merge both techniques.

Live update with virtual machine migration. The
internal data structures of operating systems can be cap-
tured by providing underlying abstractions such as vir-
tual machine [12, 38] or namespace containers [41, 48].
Microvisor [52] allows for both live update and rolling

update of host and guest operating systems by migrat-
ing a suspended virtual machine to another host before
proceeding with an update. On the other hand, ShadowRe-
boot [78] updates the guest OS by forking and restoring
the snapshot of the old guest state on the same host.

Unlike these approaches, KUP directly enables the in-
place live update of an OS without relying on a separate
host. This allows KUP to be easily used on clusters with
heterogeneous hardware, where live migration is problem-
atic due to the incompatibility of CPUs and devices.

3 KUP Life Cycle
KUP’s goal is to update an OS (e.g., kernel and system
services) by immediately applying patches without incur-
ring observable downtime. KUP achieves this goal by
first preserving the states of running applications and then
restoring their previous states on the updated OS. This
will allow administrators to update systems with minimal
downtime. Importantly, this update procedure can benefit
end users, by allowing for frequent updates not only for
immediate security fixes, but also for less critical changes,
such as performance improvements and the incorporation
of new functionality (e.g., new I/O scheduling policy and
also software rejuvenation at the OS level [40]).

Conceptually, KUP’s update procedure consists of three
steps. It first checkpoints the running applications, then
switches to the updated OS, and finally restores the sus-
pended applications. This section describes KUP’s update
procedure followed by a scenario enabled by KUP (i.e.,
safe fallback). Figure 2 gives a holistic overview of KUP’s
update cycle for applications.

Checkpointing applications. Before updating the OS,
KUP takes a snapshot of running applications. This snap-
shot is made up of process states, consisting of their mem-
ory space (e.g., code/data sections and stack/heap, etc.)
and their internal states in the kernel, including for ex-
ample the states of sockets, etc. ( 1 checkpointing in
Figure 2). The snapshot is then stored in a persistent stor-
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age, where KUP can fetch it after switching to the updated
OS ( 2 archiving).

Switching kernel. After checkpointing, KUP first loads
the new kernel binary to its memory. Then, it switches its
running kernel (old version) to the new version that was
just loaded ( 3 switching kernel). The new kernel quickly
boots up by skipping most of the hardware initialization
routine (such as slow BIOS and POST) as the devices and
peripherals were already initialized 4 . The system man-
agement daemon relaunches the required system services
after the kernel initialization 5 . KUP never checkpoints
the system services, since they are already maintained by
the system management daemon.

Restoring applications. After running the newly up-
dated kernel along with its system services, KUP starts
the process of restoring the user’s applications that were
suspended before the update. It reconstructs the process-
specific states inside the kernel and then restarts the appli-
cation ( 6 restoring).

The application C/R and kernel switch not only allow
for a seamless kernel update, but also facilitate a mecha-
nism to safely fall back to the previous kernel in case of
an update failure.

Safe fallback. KUP also supports safe fallback, a mech-
anism that allows for automatic fallback to the previous
OS state. With this mechanism, KUP tries to preserves the
availability of the older kernel to tackle failure cases intro-
duced by a buggy updated kernel as well as the liveness
of the applications.

4 Challenges
The existing general C/R tools can efficiently check-
point and resurrect applications provided by the kernel-
exposed userspace information due to the inclusion of
a namespace-based container mechanism [14, 32, 41].
However, they suffer from two well known issues: quies-
cence and memory checkpointing. Quiescence is a time
span in which all the kernel-resident data structures and
the states of threads at the kernel and user levels are con-
sistent with the checkpointed image. These both lead to
application downtime during C/R. In our experiments, the
quiescence time period constitutes only 0.01%–2% of the
total downtime while updating the OS with KUP, whereas
the major downtime occurs because of the memory dump
(95%–99%). Hence, we focus on understanding the im-
pact of the memory dump during the update as well as
the inherent limitation of the userspace C/R from an OS
update perspective. Later, we will briefly discuss how
KUP achieves quiescent state in §6 and its contribution to
the downtime.
Memory serialization for application C/R. We will
first give a brief background of the existing state-of-the-
art C/R techniques which KUP use:

• Incremental checkpointing. Checkpointing the
memory of processes imposes significant downtime
when using existing userspace application C/R tools.
The downtime will be unacceptable for applications
like memcached, since for these it is preferable for the
application’s data to be persistent and usable after an
update. To resolve this issue, the C/R component of
KUP implements incremental checkpointing. This
idea itself is not entirely new [12, 64], but it reshapes
this as an application-agnostic userspace C/R mech-
anism: it takes multiple asynchronous snapshots of
the process’s memory, followed by a synchronous
one. This leads to minimal downtime. KUP only sus-
pends the process in the last iteration, because of the
minimal checkpointed data in the last asynchronous
iteration.

• On-demand restore. The naive restore mechanism
of the existing C/R tools imposes equivalent down-
time, similar to the naive checkpoint mechanism. For
example, sequentially reading the checkpointed data
from the disk imposes an unacceptable downtime for
the memory intensive applications, like memcached,
during the restore phase. To resolve this issue, the
C/R component of KUP starts the process without
loading its entire memory contents, instead it reloads
them on-demand when the process tries to access
a particular memory address. This accelerates the
process restart, hence decreasing the application’s
downtime during restore.

However, the coupling of both on-demand restore and
incremental checkpoint degrades the overall performance
after an update. In particular, this coupling suffers from
two problems: (1) the overhead of finding a corresponding
file page when a page fault occurs in a checkpointed
snapshot image, and (2) the overhead incurred by mmap()
when binding each reloaded page in userspace. Note that
performance and scalability problems of mmap operations
in the Linux kernel are well known [13].

Eliminating redundant memory copy. Even though
the merging of the aforementioned C/R techniques speeds
up the C/R process, it copies the memory twice between
the kernel and the user space. Furthermore, the backend
storage, which keeps the snapshot persistent across sys-
tem updates, becomes the bottleneck for disk-less systems.
For example, it is not possible to update Facebook’s disk-
less memcached servers, since they cache 120 GB of data
in memory and do not have any storage medium available
for the warm-up phase.

5 KUP Design
KUP’s design goals are to (1) instantly update a running
kernel, (2) avoid any observable downtime, (3) ensure
no kernel modification, and (4) supporting all types of
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patches, unlike previous approaches [19, 69]. To realize
these goals while addressing the aforementioned chal-
lenges, we first present a new data structure called FOAM
to efficiently serialize memory for both C/R techniques
(§5.1). Then we present another optimization technique,
called persistent physical pages (PPP), to further decrease
the downtime during kernel update (§5.2). Later, we in-
troduce KUP’s safe fallback mechanism.
5.1 Userspace Application C/R
By using incremental checkpoint, the C/R component
of KUP suffers from slower restoration than the naive
checkpointing. This results in slower application restart
due to its extra work in maintaining a sequence of im-
ages taken during the incremental checkpoint. Moreover,
the performance further degrades when the incremental
checkpointing is combined with on-demand restore. For
example, depending on the application’s writable work-
ing set, memory address ranges (e.g., dirty pages) as well
as their respective metadata (e.g., previous page and ad-
dress region) get fragmented and scattered across multiple
checkpointed dumps (files). Hence, the C/R component
needs to install a huge number of mappings to backup
each page by the checkpointed dump in the restore phase.
This imposes non-negligible overhead for enabling the
on-demand restore with the incremental checkpoint, and
also results in lots of context switches while installing the
mappings at the page granularity.

To solve this problem, we design a simple yet effective
data structure called file offset-based address mapping
(FOAM), for quickly restoring the processes’ pages from
the checkpointed images. FOAM uses a direct one-to-one
mapping between the process address and file offset in a
sparse file. Due to this, KUP avoids the maintenance cost
of file indexes and fine-grained pages. Instead, KUP can
bind the checkpointed image to the whole address space.

We prepare this sparse file large enough to represent
64-bit virtual address spaces (248−1 = 128 TB excluding
kernel and canonical address spaces). We leverage the
concept of holes, which all modern filesystems support,
such that a single file is large enough to express whole
virtual address spaces (e.g., 16 EB support by xfs and
btrfs)2 while never occupying such a huge amount of
physical storage spaces underneath.
FOAM’s approach brings three advantages to KUP for

userspace-based OS update: (1) it eliminates the overhead
to maintain metadata by directly mapping process address
space to the file offset (e.g., mapping virtual memory
region at page granularity); (2) it resolves the data frag-
mentation issue from the incremental checkpointing (e.g.,
new snapshot might contain a newly updated memory re-

2FOAM is not limited by a file system that does not support such a
huge filesize. For example, to support ext4, KUP can serialize virtual
address spaces into 8 files for each process as ext4 supports 16 TB file
size.

gion if its size is changed from its previous snapshot); (3)
it simplifies the design to enable the on-demand restore
(e.g., mapping a single file to the entire process space).
With FOAM, KUP can leverage the incremental checkpoint
and on-demand restore together, thereby reducing the
downtime caused by application C/R.

5.2 Reusing Persisted Memory Across Update
Even though the FOAM approach is able to decrease the
downtime experienced by application by using state-of-
the-art C/R techniques, it still suffers from redundant
copying of the process’s memory before and after the
update. Also, there should be sufficient space to save the
checkpointed data. To thwart these problems, KUP intro-
duces a new mechanism called persistent physical pages
(PPP). PPP removes the redundant copying of the memory
from the kernel to the userspace and vice-versa. Instead, it
preserves the process’ memory across the system update.
PPP first saves the virtual address of a process and its

corresponding physical mapping at the page granular-
ity. Then, while booting the new kernel, KUP reserves
the mapping information and the corresponding pages to
forbid their usage. Later, KUP relies on the page fault
handler to rebind the pages with the restoring application
in an on-demand fashion. This allows KUP to reuse the
same physical pages at the time of restoration after the up-
date. This technique is effective in two ways: (1) it avoids
redundant copies of process’ memory during application
C/R, rather preserving them without extra overhead; (2)
it allows for an instant, page-level on-demand restoration
of a process. Unlike any application C/R, PPP does not
degrade the performance of the restored process, as it
quickly rebinds the physical page upon a page fault.

Currently, the kernel does not provide any functional-
ity to completely implement PPP in the userspace. The
previous work [69] has heavily modified multiple kernel
subcomponents to achieve it entirely in the kernel space.
On the contrary, keeping KUP’s design goals in mind, we
instead hook the kernel’s memory management unit with
the binary patching mechanisms, such that PPP is easily
applicable to the current commodity OSes.

To implement PPP, KUP needs to reserve the set of
pages as well as the virtual-to-physical mapping infor-
mation after the kernel update and then handle the page
faults for the restoring process. Since both steps are only
possible in the kernel space, we use static binary instru-
mentation for injecting the code in the kernel binary image
and dynamic kernel instrumentation to hook the page fault
handling functionality. Next, we describe binary patching
in detail, and later the steps to perform PPP.

Binary patching. For memory reservation of pages and
their mappings, KUP performs binary patching on the new
kernel binary in which the system will boot into. Before
starting the checkpointing process, KUP first does the

5
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static binary instrumentation on the kernel image. Then,
it adds a new section to the binary. This new section
contains the memory reservation code. Later, KUP finds
a specific function where the memory reservation code
should run first. Then KUP hooks that function and injects
the memory reservation function’s address, so that this
function can run before the specified function. After its
execution, the code jumps back to the specified function
and resumes the normal kernel execution.

To handle the page faults of the restored process, KUP
relies on dynamic kernel instrumentation by hooking the
kernel’s page fault handling function. KUP executes its
own page fault handling code, which binds the page cor-
responding to the stored virtual-to-physical mapping of
the restored process.

Hence, by using both instrumentation techniques, we
believe that KUP’s PPP is easily applicable to commodity
OSes while strictly adhering to the design goals of KUP.
PPP in action. KUP enables PPP with the following five
concrete steps:

(1) Before checkpointing, KUP performs binary patch-
ing on the new kernel image.

(2) During checkpointing, the virtual-to-physical map-
ping of the targeted application is passed to a kernel
module that reserves a memory space where the per-
process page mapping information is saved.

(3) During new kernel’s reboot, with the binary patched
module, KUP globally reserves the set of per-process
requested pages passed on from the previous kernel.

(4) Before application restoration, KUP patches the page
fault handler with its own version to specially handle
the page faults from the restored application.

(5) During restore, KUP only restores the states of the
process except the memory pages and then restarts
the application.

Steps (1), (2), and (4) implicitly hook the kernel. In
step (1), we patch the new kernel image with our memory
reservation code. In step (2), we use a kernel module for
saving the per-process mapping information passed to it
during the checkpoint phase. In step (4), KUP dynami-
cally patches the page fault handler to specially consider
the page faults from the restored process. After handling
all the page faults, KUP falls back to the original function,
thereby not imposing any overhead after the restoration.

By using PPP, KUP can dramatically reduce the total
downtime with respect to the application C/R. Unlike
dynamic hot-patching, PPP is applicable across multiple
kernel updates, since it does not modify any in-kernel
data structures. Instead PPP leverages the stable in-kernel
functionality for the memory reservation and page fault
handling. PPP does not introduce any security issues as
the superuser is only responsible for the whole update

Component Lines of code

criu / on-demand restore 810 lines of C
criu / FOAM 950 lines of C
criu / PPP 600 lines of C
KUP systemd, init 1040 lines of Python/Bash
criu / others, kexec(), etc. 150 lines of C
Total 3,550 lines of code

Table 1: An implementation complexity (lines of code) of KUP.

procedure. Further, PPP’s approach inherently adopts on-
demand restore, as it naturally rebinds the faulted page
to the virtual address, whereas FOAM explicitly binds the
process’s address to an image-file backed file descriptor
to enable on-demand restore.
5.3 Safe Fallback
After updating the kernel, a system or an application
may not run correctly for many different reasons. For
example, an application may not run correctly due to
the updated buggy file system [9] or a buggy system
configuration [59]. In such cases, KUP’s key ability can
be retrofitted to support safe fallback, i.e., by carrying out
instant downgrade. To allow the OS and applications to
recover from failure, KUP takes exactly the same steps,
but with the previous kernel image.

In particular, before switching kernels, KUP loads the
safe fallback kernel image in a reversed memory sec-
tion. Then, if the failure occurs, KUP performs the instant
downgrade using this safe fallback kernel image. Depend-
ing on where such a fault occurs, this downgrade can
be triggered because of a kernel layer or an application
layer. KUP supports both cases: (1) if a fault is detected
at the kernel layer (i.e., a kernel panic), KUP switches to
the previous kernel; (2) if a fault is detected at the appli-
cation layer (i.e., an application restoration fails), KUP
switches into the previous kernel with the help of the sys-
tem management daemon. Note that policies to detect
these update failures are orthogonal to KUP’s approach,
as one can easily plugin any custom policy into KUP.

6 Implementation
We implemented our prototype of KUP on Linux v3.17
by using criu (v1.4) [22] for application C/R and used
kexec() [31] for the in-place kernel switch. We modified
various components of criu and implemented userspace
binary patching module in python along with the plug-
gable kernel modules for PPP. The whole code consists
of 3,550 lines in total (see Table 1).
FOAM. Besides application C/R, KUP also relies on criu
for achieving quiescence, which is obtained as soon as
the kernel pulls the process out of the sleeping state. criu
uses the ptrace [37] functionality to achieve this. This
ensures that KUP can only begin the application check-
pointing when the process is back in the userspace as the
kernel notifies the KUP process. Moreover, KUP concen-
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Date Ubuntu minor update Updatable? Analysis Patch complexity #Bugs Example (a reason for failure)From → To KUP kpatch S D #files +#lines -#lines (security)

2014/05/15 Linux 3.13.0-24 → 27 ✓ - 18 16 150 1,346 1,480 139 (5) New .is_fw_header in rtl_has_ops struct
2014/06/04 Linux 3.13.0-27 → 29 ✓ - 4 0 178 1,495 984 168 (4) New static var. pirq_ite_set in pirqmap()
2014/07/15 Linux 3.13.0-29 → 32 ✓ - 20 14 551 11,890 5,694 756 (7) New .cache_events in power_pmu struct

2015/08/13 Linux 3.13.0-32 → 34 ✓ ✓ 0 0 6 77 18 10 (4) CVE-2014-4943 is fixed.
2015/06/14 Linux 3.19.0-20 → 21 ✓ ✓ 0 0 4 31 2 1 (1) CVE-2015-1328 is fixed.

Table 2: Snippets of our analysis on minor updates spanning twelve months, in the Ubuntu distribution, using KUP and kpatch (refer
Figure 1 for a full picture). Unlike kpatch failed to support 21 cases out of 23, KUP was able to support all 23 cases (checks under
Updatable?). To understand why kpatch cannot support such updates, we analyzed each minor release to see (1) how many new
static variables (S under Analysis column) are introduced, and (2) how many data structure layout (D under Analysis) changes are
included. To be specific, we also included an example of such cases that kpatch cannot easily support, even with manually designed
update payload.

trates on per-application C/R that only saves selected ap-
plications during an update. During restore, criu restarts
the process with the help of parasite, thereby allowing the
application to resume from where it was suspended after
reconstructing all of its states.

To enable on-demand restoration, we mmap() process’
virtual pages with the checkpointed image. For this, we
modify the criu’s parasite code, an injected process coor-
dinates process restoration, to correctly back the memory
pages by using the proper offset from the image file.

We implement FOAM by modifying both the incremen-
tal checkpoint implementation and the basic restore im-
plementation of criu. For FOAM, we use xfs as KUP’s
backend file system to store the checkpointed image as
xfs supports a filesize up to 16 TB. Otherwise, this tech-
nique can be generally applied by serializing the virtual
address spaces to multiple image files (see §5.1). KUP
maps the entire virtual address space into file offsets and
then creates holes by truncating it to 248−1 bytes.

PPP. We implement PPP by hooking the memory sub-
system via dynamic kernel instrumentation and static in-
strumentation. Before rebooting the newer kernel, we per-
form binary patching on the kernel binary (vmlinuz) by
hooking the setup_arch() function for memory and page
reservation for the restoring process. The setup_arch()
function is one of the oldest functions existing in the
kernel which we hook. While checkpointing, a kernel
module obtains the virtual address-to-page frame number
mapping from criu (via ioctl) and reserves the infor-
mation in a global memory and marks the pages to be
unusable. At the time of reboot, the hooked function re-
serves the process’ pages and the global memory with the
help of the boot allocator. Later, the page fault handler
refers the global memory for accessing the relevant pages
corresponding to the restoring process. During restore,
KUP uses jprobes to achieve the on-demand page fault
handling by hooking the handle_mm_fault(), which up-
dates the page table entry of the restoring process after
binding the page to the corresponding faulted address. We
do not modify any in-kernel data-structures for PPP.

Optimizing kexec(). Unlike dynamic hot-patching
techniques that employ unstable in-place updates (see Fig-
ure 1), KUP seeks a robust way to replace the entire kernel,
thus allowing a complete switching between two different
kernel versions. Instead of relying on hard or soft reboot,
we use kexec(), which is originally designed to debug a
crashed kernel with a secondary kernel image in a post-
mortem manner. kexec() is robust as it supports all minor
updates of Ubuntu from May 2014 to July 2015, and is
over 50% faster than soft reboot (see Table 3). kexec()
acts as a minimal bootloader. It is responsible for resetting
device states before booting into a new kernel.

We make two optimizations to the stock kexec() to
reduce the booting time: (1) avoid polling of PCIe slots,
if they are not used before switching the kernel; (2) bring
CPUs lazily online during boot, since we observed that
the synchronization among system services slows down
the system’s boot.

7 Evaluation
We evaluate KUP by answering the following questions:

• How effectively can KUP apply patches compared
to popular dynamic hot-patching techniques? (§7.1)

• How much downtime does KUP incur while running
various types of applications during updates? (§7.2,
§7.3)

• How effective is each technique in decreasing the
system downtime during updates? (§7.4)

• How effective is KUP in a full software stack com-
posed of multiple inter-related applications? (§7.5)

7.1 Dynamic Hot-patching vs. KUP

We compare KUP with kpatch (latest version—v0.2.2) to
show its effectiveness when switching between various
versions of Ubuntu kernel releases. Table 2 shows in-
depth results on five specific patches out of 23 patch cases
discussed in Figure 1. Overall, KUP is able to support all
23 updates, whereas kpatch fails to update 21 versions
except two. It fails if any of the following happens in the
patch: (1) build and diff failure for the kernel versions; (2)

7
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Figure 3: Throughput degradation, downtime and the data
dumped in the last iteration measured for varying iterations
during incremental checkpoint of memcached.

a patch modifies a value of static local variables (shown
as S in Analysis column); (3) a patch changes the layout
of a data structure (shown as D in Analysis column).

The first case, build and diff failure, is an implemen-
tation bug of kpatch and is not related to the inherent
limitations of dynamic hot-patching techniques. We eval-
uated 23 patches and kpatch fails for 11 such cases. The
second case consisting of the update of static local vari-
ables’ values, causes a conflict with its runtime value
semantics after hot-13 patches belong to this category
that can be handled via kernel module. The last case en-
tails a layout change in a data structure, in which kpatch
has to locate and update all of its instances during runtime
to safely update the system, but completely identifying
them is far beyond the current state-of-the-art techniques
and involves many challenging problems in the domain
of program analysis [17]. kpatch fails on 11 patches for
this case.

The aforementioned causes can be related to the patch
complexity, which we measure in terms of the number of
files and lines of code changed (Patch complexity column)
and the number of bugs addressed (#Bugs column). The
kernel updates, 3.13.0-32 → 34 and 3.19.0-20 → 21, are
the only two updates that kpatch can handle, as there are
relatively few changes in the code: the former changes 6
files and 71 lines of code to fix 10 bugs, and the latter one
modifies 77 files and 31 lines of code to fix one bug. All
other updates alter more than 150 files and 1346 lines of
code, thereby resolving 139 bugs.

7.2 Applying KUP with Running Applications
In this section, we evaluate KUP with various types of
real applications and provide our analysis of the impact of
KUP on their performance across a system update. KUP
is able to handle all major updates from v3.17-rc6 to v4.1.
We perform all of our experiments on a 4 core machine
with 64 GB RAM.

Faster storage medium: RP-RAMFS. As discussed in §5,
the backend storage medium can inhibit the end-to-end
performance of KUP. Users can circumvent this by adopt-

ing a RAM-based file system (reboot-persistent RAM
file system—RP-RAMFS [18]) that stores its data purely in
RAM but makes it persistent across system reboots. Note
that RP-RAMFS is complementary to any C/R, even though
it can dramatically decrease the application downtime.
We use RP-RAMFS to show that users can use the emerg-
ing persistent memory [62] as a persistent-across reboot
memory for the application C/R. However, RP-RAMFS has
one fundamental limitation: the system needs enough free
RAM to store the snapshot.

Targeted applications. While KUP can support most of
applications (see §8 for limitations), we select four appli-
cations, namely memtester [10], memcached [42], mysql
and the Linux kernel compilation (LKC), to show the ef-
fectiveness of KUP. memtester is a memory-write inten-
sive application that is used for finding faults in RAM.
memcached is a in-memory key/value store and we use
memaslap as a client for load generation. memaslap runs
on a different machine. mysql is a relational database. We
use linkbench [3], which is a read-dominated benchmark
that processes social graphs by using mysql as a database.
We chose memcached, memtester and linkbench to il-
lustrate memory-heavy workloads, and LKC to represent
multi-process and computation-heavy program with small
working set size (around 25 MB).

Incremental checkpoint iterations. In regard to FOAM,
KUP’s only tunable parameter is the number of iterations
used for the incremental checkpoint. To see how the itera-
tion count affects system behavior, we measure through-
put, downtime, and amount of data written in the last iter-
ation for memcached by varying the iteration count. Even
for memory-heavy memcached, Figure 3 shows that there
were no meaningful differences in both throughput (1-2%)
and downtime since the incremental checkpoint quickly
converges from the second iteration. This is because,
unlike previous studies based on slow network-based in-
cremental checkpointing mechanisms [12, 64], KUP uses
fast local storage or memory for checkpointing, making
iterations non-critical. For all other experiments in this
paper, we set the iteration count to two.

Results. KUP can successfully update the Linux ker-
nel from v4.0 to v4.1 while running the aforementioned
programs. Figure 4 shows the exact downtime and the
data checkpointed for various schemes of KUP. PPP out-
performs all other techniques as it only saves the page
frame numbers (corresponding to the actual pages’ physi-
cal address) rather than the actual page contents, thereby
decreasing the checkpointed size by orders of magnitude.
However, there is not much difference between PPP and
FOAM for LKC, because of its smaller working set size.
FOAM efficiently supports both incremental checkpoint-

ing and on-demand restore. Because of the incremental
checkpoint, only the data that gets checkpointed in the
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Figure 4: Downtime breakdown of checkpoint-and-restart on various applications when updating a kernel from 4.0 to 4.1 with KUP.

last iteration contributes to the observable downtime. Evi-
dently, due to KUP’s simple data structure used for image
checkpointing, FOAM’s image size remains the same as that
of the basic approach. Figure 4 shows negligible down-
time for on-demand restore, thus proving the advantage of
using on-demand restore for all three approaches: single
checkpointed data (marked Ond), FOAM and PPP, against
basic restore.

7.3 End-to-end Analysis of KUP’s Approach
In this section, we cover an end-to-end performance eval-
uation of a web service, memcached (approximately con-
suming 5.6 GB with 20% percent write operations), while
updating the system’s kernel from v4.0 to v4.1. We use
bwm-ng tool [76] to understand its downtime during up-
date by end-users. Since memcached is a memory intensive
service caching large amounts of data, where data loss is
critical to performance after system update, it fits well for
KUP’s purpose and effectively shows the impact of our
techniques.
Effectiveness of techniques. Figure 5 exhibits the im-
pact of KUP on bandwidth utilization by the client per-
forming get/set operations on memcached server during
updates. PPP shows the best performance (refer (i)) in
terms of shortest downtime and least performance degra-
dation (only 0.68% over the period of 300 seconds) after
being restored. Since, PPP instantly shifts to kexec(), this
can be beneficial to applications that are either time crit-
ical or that execute for shorter durations. Not only that,
PPP is storage -independent thanks to its efficient memory
mapping storage (see §7.4).

In terms of downtime, FOAM performs the same as PPP
(refer (h) and (i)). This is because FOAM provides the best
of both worlds by combining both state-of-the-art tech-
niques and has least downtime compared to the individual
techniques ((d) and (h)). However, one disadvantage of
FOAM is that it disrupts the bandwidth during incremental
checkpoint (starts around 192 second in (h)), even though
it keeps server alive.

The basic technique ((a) and (e)) suffers the most,
whereas the incremental checkpoint ((b) and (f)) and on-
demand restore ((c) and (g)) techniques perform almost
the same, as both reduce their respective downtime in two
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Figure 5: Bandwidth of memcached service during a system up-
date. We measured the performance of memcached and initiated
the kernel update with KUP (a bar near 192 second). From top to
bottom, each graph demonstrates properties of each technique,
baseline, incremental checkpoint, on-demand restore, and FOAM
on either SSD or RP-RAMFS as a backend medium, and lastly PPP.
The boxes represent the time from which the network throughput
starts decreasing due to the in-progress update.

different steps of OS update. Besides this, the on-demand
restore helps the memcached server to instantly activate—
the bandwidth utilization is non-zero instantly after the
OS update (refer (c), (d), (g) and (h)). KUP can further
leverage Halite’s prefetching approach [81] to improve
performance during on-demand restore of memcached ((c)
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Machine Soft reboot kexec() reboot

Default Default Optimized

1-way 4-core E5-1620/ 64 GB 45.2 2.4 2.4
1-way 8-core E3-1271/ 32 GB 42.9 6.7 6.0
2-way 16-core E5-2630/128 GB 62.9 22.1 9.2
8-way 80-core E7-8870/512 GB 247.5 31.9 25.9

Table 3: Kernel switch time in seconds for different hardware
configurations. We used a 1-way 4-core machine for evaluation.
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Figure 6: We simulated the update failure by triggering a fault
right after system’s boot (red mark). KUP’s safe fallback mech-
anism allows memcached to continue running on the previous
kernel even after the update failure.

and (d)). Likewise, the incremental checkpoint (refer
(b) and (f)) also decreases the downtime during when
compared with the basic approach.

Downtime from kernel switch. Although the kernel
switch has no effect on application C/R, it adds significant
overhead as downtime. Furthermore, this downtime varies
with various hardware configurations. Table 3 shows both
of the soft and kexec() reboot times. The reboot time is
the time taken to boot into a new kernel from the previous
one. For machines with increasing core count, both of
the soft reboot time as well as the default kexec() time
increase with increasing hardware complexity. On fur-
ther analysis, we found that most of the time is spent in
purgatory [31], which runs in between two kernels and
initializes hardware components such as PIC and VGA.
This holds true even for the bigger machines (>16 cores),
which we need to investigate further. In addition, the new
kernel also spends time initializing the system services
such as network services and filesystem mounting. We
reduce the system boot time (refer Table 3) at two places
during the new kernel boot: (1) by lazily bringing up
each core, which saves six seconds for the 80-core ma-
chine, and (2) by skipping the polling of unused PCI slots,
thereby saving 8.5 seconds on the 16-core machine.

Safe fallback upon a failure. KUP inherently provides
safe fallback mechanism by using kexec(). To show its
effectiveness, we intentionally inject a fault in the restore
process right after the new kernel boots up. As soon as
KUP detects a fault, it initiates a downgrade to its previous
kernel image, which we stored at the initiation of the up-
date. Figure 6 shows the performance of memcached upon
such an event. As expected, the downtime of memcached
becomes approximately two times longer (five seconds)
than KUP’s update without an error. The safe fallback ap-
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proach is only used once we are confident we can safely
restart the application on the older kernel. We further
test the KUP’s safe fallback approach with a buggy file
system [9] while running Linux kernel compile. Since
KUP could not resume compilation in the updated kernel,
it reverted to the previous version.
7.4 Micro-benchmarking FOAM and PPP
In this section, we discuss the impact of PPP and FOAM
for various storage media by performing two experiments.
This first of these is a microbenchmark-based evaluation
which measures the downtime when checkpointing a pro-
cess with varying working set size (up to 72 GB) with 50%
write (Figure 7). The micro-benchmark allocates a certain
amount of memory and endlessly dirties the pre-specified
part of the allocated memory. By varying the working
set size (WSS) from 1 GB to 72 GB on both SSD and
RP-RAMFS, we measure the downtime incurred by both
techniques. Figure 7 shows the effectiveness of using
PPP as it outperforms all the techniques by 9.5-98.3× for
SSD and 3.9-14.1× against RP-RAMFS by avoiding redun-
dant copies of process’s memory. KUP cannot rely on
RP-RAMFS as it fails to work beyond 56 GB and 128 GB is
the machine’s total memory size.

On the other hand, the second experiment measures
the downtime incurred while checkpointing and restarting
multiple memcached instances (one to eight) on SSD while
updating the OS with KUP (Figure 8). The experiment
illustrates that (1) KUP is an effective per-application
-based C/R mechanism that can checkpoint multiple ap-
plications in parallel and (2) PPP is the best approach
for updating an OS with multiple applications are run-
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Figure 9: Updating OS with a full-stack media streaming service—ampache. (a) shows the downtime observed when performing C/R
on ampache with KUP. (b) shows the video buffering observed on the client side during OS update. Full web-stack C/R corresponds
to updating the complete stack, whereas partial web-stack C/R is the careful C/R performed by the system administrator while
updating the OS with KUP.

ning. Figure 8 shows the benefit of using PPP against
FOAM. FOAM’s checkpointed data determines its downtime.
Thus, with increasing memcached instances, KUP’s overall
downtime increases linearly. However, since PPP does not
require I/O operations for checkpointing, its downtime
remains constant regardless of the number of running
instances.

7.5 Supporting the Full Software Stack
Here, we discuss the flexibility of KUP in updating a full
software stack made up of typical co-running applica-
tions on general purpose servers inside data centers. We
use ampache as a full software stack. We try to update
it with and without the stack’s knowledge. ampache is a
php based media streaming service running with mysql to
store the information about the users and songs. We mod-
ify ampache to also store movies in mysql. Figure 9 shows
the downtime incurred because of C/R and as well as the
buffering observed on the client side in terms of packets
received while streaming a movie clip. On the server
side, KUP checkpoints both apache and mysql and the
maximum downtime observed because of C/R is around
300 and 200 milliseconds for FOAM and PPP respectively
(refer Figure 9(a)). On the client side, the buffering stops
for around three seconds and then resumes. However, the
user does not observe any interruption while watching the
video.

Since KUP is a per-application -based OS update mech-
anism, the administrator can perform partial web-stack
C/R during the update by updating only a particular com-
ponent of the whole service, assuming the administrator
has a complete understanding of the full software stack.
For example, in our case, KUP should only checkpoint
mysql and leave the apache to the system management
daemon. With this approach, the downtime can be fur-
ther reduced by approximately 100 milliseconds (refer
Figure 9(c)). Even though there is no observable im-
provement on the client side, such selective partial C/R
can further reduce downtime in complex software stacks.
Moreover, we confirm that the video and song keep on
streaming even after the update, which helps us in verify-

ing the correctness of our system.

8 Discussion
In this section, we discuss the limitations of KUP’s ap-
proaches of using application C/R for instant kernel up-
dates, and we discuss potential optimizations to further
reduce the downtime imposed by the kernel switch.

Limitations. KUP inherits the limitations of criu for
application C/R, such as limited support of compat mode
of x86-64. This restricts the type of application that KUP
can support. Furthermore, application C/R schemes find it
difficult to restore the external resources. However, in the
context of updating OSes, there are many opportunities to
overcome these limitations. Because of the shorter time
gap between checkpoint and restart in KUP, the host’s
external interfaces can easily resolve such uncertainty
by describing some forms of buffering mechanisms. For
example, a TCP/IP state will be preserved for about 75
seconds (default in Linux [29]) until the reset packet is
fired. As long as the effective downtime is reasonably
small, KUP can optimistically restore the checkpointed
applications correctly, as in memcached §7.3 and full soft-
ware stack §7.5. Currently, there is an ongoing effort
to reliably preserve the TCP/IP states across updates or
migrations [16]. Besides this, the current implementation
of KUP partially supports unix domain sockets and desk-
top applications. Another point is that the downtime due
to KUP’s FOAM is still sensitive to the number of cache-
to-disk writes. In the future, we would like to explore
mechanisms that keep dirty pages across updates.

Using different kernel versions may affect the restora-
tion process, thus adding another limitation to KUP usage.
If the new kernel (or old kernel on downgrade) hampers
its backward (or forward, respectively) compatibility (e.g.,
dropping a support of a certain system call, or even chang-
ing the interface of certain system calls), the restoration
might fail, but we believe this is rare (or unlikely) in
practice, as surveyed in §7.1. If the new kernels handle
the application-specific states differently, this may result
in latent application corruption. However, we are yet
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to encounter such unexpected behavior. Another limita-
tion can be that the newer kernel looses the old kernel
data. This holds true only for applications that KUP do
not checkpoint. Besides that, the kernel’s memory state
is independent of the checkpointed applications, thereby
making them worthless for the checkpoint.

Suitable applications. We believe that KUP is suit-
able for all types of applications. By using PPP approach,
KUP can update any type of application ranging from
memory-intensive to I/O-intensive workloads. However,
if there is any memory management modification or a
page corruption occurs after the update, then the safe fall-
back technique will also fail. On the other hand, FOAM
technique is not a suitable candidate for write-intensive
workloads that frequently allocate and free memory pages.
However, it provides the guarantee of safely falling back
to the previous kernel with more confidence as the pro-
cess’ data is persisted on the disk. Therefore, the system
administrators should choose wisely, depending on the
criticality of the application and its service.

Optimizing reboot. The major source of downtime in
KUP is the in-place kernel switch, depending on kexec();
varying from 2.4 sec to 25.9 sec based on the underlying
hardware. Although we applied a few basic optimizations
to kexec() (§6), we can further improve it by adopting a
number of promising techniques demonstrated by previ-
ous research. For example, Nooks [74] develops shadow
drivers techniques that preserve its internal states upon
failure, and Live Update [75] uses a similar technique to
share its internal state across device driver updates. An-
other promising direction is to carry over device driver
states across reboot as there will be no hardware changes
in the middle of system updates.

9 Conclusion
KUP is a simple yet robust update mechanism that in-
stantly updates a running kernel across major kernel ver-
sions. KUP checkpoints user applications, then replaces
the existing kernel with an updated kernel (any kernel
version), and finally restores the checkpointed applica-
tions thereafter. KUP achieves its goal of instant kernel
update by efficiently merging both checkpoint and re-
store techniques with the help of an optimized checkpoint
format. Moreover, we come up with a complementary
memory persistence mechanism that solves the inherent
problem of userspace C/R and further improves KUP’s
performance while catering to disk-less systems. We be-
lieve that KUP is the first work that realizes swift kernel
updates without modifying any kernel source. This makes
KUP robust enough to be used in practice, thus allowing
users to enjoy instant system updates for security patches,
bug fixes and performance improvements with minimal
disruption.
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