
Cross-checking Semantic Correctness:
The Case of Finding File System Bugs

Changwoo Min Sanidhya Kashyap Byoungyoung Lee Chengyu Song Taesoo Kim
Georgia Institute of Technology

Abstract
Today, systems software is too complex to be bug-free. To
find bugs in systems software, developers often rely on code
checkers, like Linux’s Sparse. However, the capability of
existing tools used in commodity, large-scale systems is
limited to finding only shallow bugs that tend to be introduced
by simple programmer mistakes, and so do not require a
deep understanding of code to find them. Unfortunately, the
majority of bugs as well as those that are difficult to find are
semantic ones, which violate high-level rules or invariants
(e.g., missing a permission check). Thus, it is difficult for
code checkers lacking the understanding of a programmer’s
true intention to reason about semantic correctness.

To solve this problem, we present JUXTA, a tool that au-
tomatically infers high-level semantics directly from source
code. The key idea in JUXTA is to compare and contrast
multiple existing implementations that obey latent yet im-
plicit high-level semantics. For example, the implementation
of open() at the file system layer expects to handle an out-
of-space error from the disk in all file systems. We applied
JUXTA to 54 file systems in the stock Linux kernel (680K
LoC), found 118 previously unknown semantic bugs (one
bug per 5.8K LoC), and provided corresponding patches to
39 different file systems, including mature, popular ones like
ext4, btrfs, XFS, and NFS. These semantic bugs are not easy
to locate, as all the ones found by JUXTA have existed for
over 6.2 years on average. Not only do our empirical results
look promising, but the design of JUXTA is generic enough
to be extended easily beyond file systems to any software that
has multiple implementations, like Web browsers or protocols
at the same layer of a network stack.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815422

1. Introduction
Systems software is buggy. On one hand, it is often imple-
mented in unsafe, low-level languages (e.g., C) for achiev-
ing better performance or directly accessing the hardware,
thereby facilitating the introduction of tedious bugs. On the
other hand, it is too complex. For example, Linux consists of
almost 19 million lines of pure code and accepts around 7.7
patches per hour [18].

To help this situation, especially for memory corruption
bugs, researchers often use memory-safe languages in the
first place. For example, Singularity [34] and Unikernel [43]
are implemented in C# and OCaml, respectively. However,
in practice, developers largely rely on code checkers. For
example, Linux has integrated static code analysis tools (e.g.,
Sparse) in its build process to detect common coding errors
(e.g., checking whether system calls validate arguments that
come from userspace). Other tools such as Coverity [8] and
KINT [60] can find memory corruption and integer overflow
bugs, respectively. Besides these tools, a large number of
dynamic checkers are also available, such as kmemleak for
detecting memory leaks and AddressSanitizer [51] for finding
use-after-free bugs in Linux.

Unfortunately, lacking a deep understanding of a program-
mer’s intentions or execution context, these tools tend to
discover shallow bugs. The majority of bugs, however, are se-
mantic ones that violate high-level rules or invariants [15, 42].
According to recent surveys of software bugs and patches,
over 50% of bugs in Linux file systems are semantic bugs [42],
such as incorrectly updating a file’s timestamps or missing a
permission check. Without domain-specific knowledge, it is
extremely difficult for a tool to reason about the correctness or
incorrectness of the code and discover such bugs. Thus, many
tools used in practice are ineffective in detecting semantic
vulnerabilities [15].

In this regard, a large body of research has been proposed
to check and enforce semantic or system rules, which we
broadly classify into three categories: model checking, for-
mal proof, and automatic testing. A common requirement
for these techniques is that developers should manually pro-
vide the correct semantics of code for checking: models to
check and proofs of program properties. Unfortunately, cre-
ating such semantics is difficult, error-prone, and virtually
infeasible for commodity systems like Linux.

361

To solve this problem, we present JUXTA, a tool that auto-
matically infers high-level semantics from source code. The
key intuition of our approach is that different implementa-
tions of the same functionality should obey the same system
rules or semantics. Therefore, we can derive latent semantics
by comparing and contrasting these implementations. In par-
ticular, we applied JUXTA to 54 file system implementations
in stock Linux, which consists of 680K LoC in total. We
found 118 previously unknown semantic bugs (one bug per
5.8K) and provided corresponding patches to 39 different file
systems, including mature and widely adopted file systems
like ext4, btrfs, XFS, and NFS. We would like to emphasize
that these semantic bugs JUXTA found are difficult to find, as
they have existed for over 6.2 years on average; over 30 bugs
were introduced more than 10 years ago.
Challenges. The main challenge in comparing multiple file
system implementations arises because, although all of them
implicitly follow certain high-level semantics (e.g., expect
to check file system permissions when opening a file), the
logic of each (e.g., features and disk layout) is dramatically
different from that of the others. More importantly, these high-
level semantics are deeply embedded in their code in one way
or another without any explicit, common specifications. To
overcome these challenges, instead of directly comparing all
of the file system implementations, we devised two statistical
models that properly capture common semantics, yet tolerate
the specific implementation of each file system; in other
words, JUXTA identifies deviant behavior [29] derived from
common semantics shared among multiple different software
implementations.
Contributions. This paper makes the following contribu-
tions:

• We found 118 previously unknown semantic bugs in 39
different file systems in the stock Linux kernel. We made
and submitted corresponding patches to fix the bugs that
we found. Currently, patches for 65 bugs are already in
the mainline Linux kernel.

• Our idea and design for inferring latent semantics by com-
paring and contrasting multiple implementations. In par-
ticular, we devise two statistical comparison schemes that
can compare multiple seemingly different implementa-
tions at the code level.

• The development of an open source tool, JUXTA, and
its pre-processed database to facilitate easy building of
different checkers on top of it. We made eight checkers
including a semantic comparator, a specification/interface
generator, an external APIs checker, and a lock pattern
checker.

The rest of this paper is organized as follows. §2 provides
the motivation for JUXTA’s approach with a case study. §3
gives an overview of its workflow. §4 describes JUXTA’s
design. §5 shows various checkers built on top of JUXTA.
§6 shows JUXTA’s implementation. §7 explains the bugs we

found. §8 discusses our potential applications. §9 compares
JUXTA with previous research and §10 provides the conclu-
sion.

2. Case Study
Linux provides an abstraction layer called the virtual file sys-
tem (VFS). The Linux VFS defines an interface between a
file system and Linux, which can be viewed as an implicit
specification that all file systems should obey to be interoper-
able with Linux. To derive this latent specification in existing
file systems, JUXTA compares the source code of each file
system originating from these VFS interfaces. However, the
VFS interface is complex: it consists of 15 common opera-
tions (e.g., super_operations, inode_operations) that com-
prise over 170 functions. In this section, we highlight three
interesting cases (and bugs) that JUXTA found: rename(),
write_begin/end(), and fsync().

2.1 Bugs in inode.rename()
One might think that rename() is a simple system call that
changes only the name of a file to another, but it has very sub-
tle, complicated semantics. Let us consider a simple example
that renames a file, “old_dir/a” to another, “new_dir/b”:

1 rename("old_dir/a", "new_dir/b");

Upon successful completion, “old_dir/a” is renamed “new_dir/b”
as expected, but what about the timestamps of involved direc-
tories and files? To precisely implement rename(), developers
should specify the semantics of 12 different pieces of mutated
state: three timestamps, ctime for status change, mtime for
modification, and atime for access timestamps, all of which
for each of four inodes, old_dir, new_dir, a, and b. In fact,
POSIX partially defines its semantics: updating ctime and
mtime of two directories, old_dir and new_dir:

“Upon successful completion, rename() shall mark for
update the last data modification and last file status
change timestamps of the parent directory of each
file.” [55]

In the UNIX philosophy, this specification makes sense since
rename() never changes the timestamps of both files, a, and
b. But in practice, it causes serious problems, as developers
believe that the status of both files (ctime) is changed after
rename().

For example, a popular archiving utility, tar, used to have
a critical problem when performing an incremental backup
(–listed-incremental). After a user renames a file a to b,
tar assumes file b is already backed up and file a is deleted,
as the ctime of b is not updated after the rename. Then, upon
extraction, tar deletes file a, which it thinks was deleted, and
never restores b as it was skipped, thereby losing the original
file that the user wanted to back up [1].

However, it is hard to say this is tar’s fault because the
majority of file systems update the ctime of new and old

362

POSIX Linux 4.0-rc2 Belief ⋆ VFS ⋆ AFFS BFS Coda FAT HFS HFSplus HPFS JFFF2 RAMFS UDF XFS

Defined

old_dir->i_ctime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓
old_dir->i_mtime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓
new_dir->i_ctime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - ✓
new_dir->i_mtime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - ✓
new_dir->i_atime - - - - - ✓ - - - - - - -

Undefined new_inode->i_ctime ✓ - ✓ - - ✓ - - - - - ✓ -
old_inode->i_ctime ✓ ✓ - - - - - - - - ✓ ✓ ✓

Belief ⋆ supported by ext2, ext3, ext4, btrfs, F2FS, NILFS2, ReiserFS, CIFS, EXOFS, JFS, UBIFS, UFS, OCFS, GFS2, and MINIX

Table 1: Summary of rename() semantics of updating timestamp upon successful completion. A majority of Linux file systems update the
status change timestamp (e.g., i_ctime/i_mtime) of source and destination files (e.g., old/new_inode) and update both status change and
modification timestamps of both directories that hold source and destination files (e.g., old/new_dir). Note that the access timestamp of the
new directory should not be updated; only FAT updates the access timestamp, implying that this is likely semantically incorrect. By observing
such deviant behaviors of existing file system implementations, JUXTA can faithfully pinpoint potential semantic bugs without any concrete,
precise models constructed by programmers. The most obvious deviant ones are HPFS and UDF, as the former one does not update any of the
times (neither i_ctime nor i_mtime) for old_inode and new_inode, whereas the latter one only updates the old_inode timestamps. JUXTA’s
side-effect checker found six such bugs. In addition, after sending patches for the bugs, the corresponding developers fixed eighteen more
similar bugs in the file system [36, 46].

address_space.write_begin(pagep)

address_space.write_end(page)

@-MAX_ERRNO ≤ ret < 0 (failure) → unlock/release(page)
@ret = 0 (success) → *pagep = page

@any → unlock/release(page)

@any → page = grab_cache_page_write_begin()

Writing pages to disk

(flushing pages) ...

Figure 1: Simplified semantics of address space operations that we
extracted from 12 file system implementations in Linux. Each file
system implements such operations to manipulate mappings of a file
to the page cache in Linux file systems: for example, write_begin()
to prepare page writes and write_end() to complete the page write
operation. Grayed boxes indicate derived return conditions and their
right sides represent common operations executed by all file systems
under such return conditions.

files after rename(), though POSIX leaves this behavior un-
defined. In fact, assuming that rename() updates the ctime
of both files is more reasonable for developers, as tradition-
ally, rename() has updated ctime when implemented with
link() and unlink() [1, 55]. Not only does Solaris still mod-
ify the ctime after renaming files for compatibility of its
backup system (ufsdump and ufsrestore), but also modern
and mainstream file systems (e.g., ext4 and btrfs) in Linux
update the ctime after rename() (see Table 1).

In this paper, we propose an automatic way to extract high-
level semantics and assess their correctness from multiple
implementations without any specification. For example,
JUXTA can summarize the semantics of Linux file systems by
comparing over 50 different file system implementations in
stock Linux, as shown in the summary of rename() semantics
(and buggy behaviors) in Table 1.

2.2 Bugs in address_space.write_begin/end()
Linux file systems support memory-mapped files that map
a file to a process’ memory space. To manipulate these
mappings, each file system implements a set of operations,

called address_space_operation. As these operations are
tightly integrated into the VFS, each file system should
obey certain rules, ranging from as simple as returning zero
upon success to as complex as requiring specific locks with
specific orders and releasing pages upon error. In fact, such
rules consist of 290 lines of document just for address space
operations [31].

The key idea of this paper is to extract such semantics
from existing file systems without any domain-specific model
or specification. In this case study, we use two functions of
address_space_operation (out of 19 functions) to explain
our extracted semantics in detail: write_begin() to prepare
page writes and write_end() to complete the operation.
Figure 1 depicts the high-level semantics of write_begin()
and write_end() that 12 file systems in Linux obey. For
example, upon successful completion of write_begin(), they
allocate a page cache, update the page pointer (pagep), and
return zero (indicating the operation’s success). Upon failure,
they always unlock and release the page cache and return an
error code (a range of error values). However, in write_end(),
the allocated page cache should be unlocked and released in
all possible code paths because Linux VFS starts the write
operation only after write_begin() successfully locks the
page cache.

JUXTA can derive such high-level semantics that are of-
ten not clearly specified (see §2.3) or are only implicitly
followed by developers (by mimicking a mainstream file
system like ext4). More importantly, JUXTA found two previ-
ously unknown violations in write_end() of affs and one in
write_begin() of Ceph (all patched already) by comparing
12 different file systems that implement the address space
operation.

2.3 Bugs in man Pages, Documents, and Comments
After comparing fsync() implementations of various file
systems, JUXTA found that a few file systems (ext3, ext4,
and OCFS2) return -EROFS to indicate that the file system is

363

mounted as read-only, while the rest of the file systems never
report such an error.1 More surprisingly, the POSIX standard
for fsync() [54] does not define -EROFS error, but the Linux
manual does [56].

On further analysis, it turns out that this is a very sub-
tle case that only some file system developers are aware
of [58, 59], although the VFS documentation [31] and POSIX
specification [54] never explicitly state this error. This corner
case can happen when the status of the file system changes
from read-write to read-only (e.g., remounting upon file sys-
tem error). Since a file’s inode flag (i_flags) only inherits the
mount flag of its file system at open(), all files in use (their
i_flags) will not reflect the current state of their file system
after the status change. In other words, to avoid a disastrous
situation in which a file system overwrites its disk blocks
after being remounted as read-only, all fsync() invocations
should independently check the status of the file system to
see if it is read-only (i_sb->s_flags & MS_RDONLY) instead
of trusting the inode flag.

1 // @v4.0-rc2/fs/ubifs/file.c:1321
2 int ubifs_fsync(...) {
3 ...
4 if (sbi->ro_mount)
5 // For some really strange reasons VFS does not filter out
6 // ’fsync()’ for R/O mounted file-systems as per 2.6.39.
7 return 0;
8 }

Based on analysis using JUXTA, we found that all file sys-
tems except ext3, ext4, OCFS2, UBIFS, and F2FS never con-
sider such errors (even the ones relying on generic_file_fsy
nc()—32 files systems in total). We believe that such viola-
tions should be considered as potential bugs.

3. Overview
JUXTA’s workflow is a sequence of stages (Figure 2). For
each file system in Linux, JUXTA’s source code merge stage
first combines the entire file system module as a single large
file (e.g., rescheduling symbols to avoid conflicts) for precise
inter-procedural analysis in its symbolic execution engine
(§4.1). Second, JUXTA symbolically enumerates all possi-
ble C-level code paths (unlike instruction-based symbolic
execution engines), which generates path conditions and side-
effects as symbolic expressions (§4.2). JUXTA then prepro-
cesses the generated path conditions (§4.3, §4.4) and creates
a database for all checkers (applications) to build upon (§5).
The database contains rich symbolic path conditions that can
be easily and quickly accessed by various other checkers for
their needs.
Semantic bugs. The term semantic bug is used ambigu-
ously to describe a type of bug that requires domain-specific
knowledge to understand (e.g., execution context in kernel),
whereas shallow bugs, like memory errors (e.g., buffer over-
flow), can be understood in relatively narrower contexts. One

1 UBIFS and F2FS check the read-only status of the filesystem but return
zero.

Source code merge
(e.g., rescheduling

 symbols)

Path explorer

File system
source code

(e.g., ext2/3/4, xfs, ...)
Merged

file system code

ext2.c
ext3.c

xfs.c

...

Clang/LLVM
Static Analyzer

Symbolic
environment

Per-FS
Unfolded path

(e.g., path conditions ..)
ext2

ext3
XFS

...

Statistical path
comparision libs
(e.g., histogram,

entropy)

DB

DB

Known entry points
(e.g., vfs ops, ...)

Analysis modules

Canonicalizing
symbols Extracting

FS specification

Cross-module
refactoring

Applications

Finding semantic
bugs

Metadata

Inferring lock
usage patterns

§4.1

§4.3

§5.4

§4.5

§5.3

§5.2

§5.1

§4.2

Intermediate
results

Extracting
external APIs §5.5

Figure 2: Overview of JUXTA’s architecture and its workflow. For
each file system in Linux, the source code merge stage first combines
the entire file system module into a single large file (§4.1); then
JUXTA’s symbolic execution engine enumerates C-level code paths
with proper symbolic execution contexts (§4.2). By preprocessing
the generated path conditions (§4.3, §4.4), JUXTA creates a database
that all other checkers (§5) build upon.

might think that memory corruption bugs are more critical
from the systems security perspective, as they are often ex-
ploitable by attackers. However, semantic bugs are also seri-
ous (e.g., resulting in file system corruption and complete loss
of data [30, 42]), as well as security-critical (e.g., missing
an ACL check in a file system results in privilege escalation
without any sophisticated exploits or attacks).

In general, semantic bugs are difficult to detect. In our
study, we measured how long each semantic bug that JUXTA
detected remained undiscovered (i.e., its latent period). The
result showed that their average latent period was over 6.2
years, implying that JUXTA is effective in finding long-
existing semantic bugs.

To be precise, we classified semantic bugs in file systems
into four categories that are similar to a recent survey on
file system bugs [42]: (S) State, representing inconsistent
state updates or checks (e.g., missing permission check); (C)
Concurrency, indicating bugs related to execution context
that might lead to deadlock or system hang (e.g., lock/unlock
and GPF flag); (M) Memory error, representing inconsistent
usage of memory-related APIs (e.g., missing a kfree unlike
other paths); and (E) Error handling bugs (e.g., inconsistently
handling errors). Table 5 and Table 6 incorporate these
notations to describe relevant semantic bugs.

4. Design
The key insight behind our approach is that the same VFS en-
try functions (e.g., inode_operations.open()) should have
the same or similar high-level semantics (e.g., handling com-
mon errors and returning standard error codes). JUXTA at-
tempts to extract the latent VFS specification by finding the

364

L Type Symbolic expression

1 FUNC ext4_rename(old_dir, old_dentry
new_dir, new_dentry, flags)

2 RETN 0

3 COND (S#old_dir->i_sb->s_time_gran) >= (I#1000000000)
4 COND (S#old_dir->i_sb->s_fs_info->s_mount_opt)

& (C#EXT4_MOUNT_QUOTA) = 0
5 COND (S#flags) & (C#RENAME_WHITEOUT) != 0
6 COND (E#IS_DIRSYNC(old_dir)) = 0
7 COND (E#IS_DIRSYNC(new_dir)) = 0
8 COND (E#S_ISDIR(old->inode->i_mode)) = 0
9 COND (E#ext4_add_entry(handle, new_dentry, old->inode)) = 0

10 CALL (T#1) = ext4_add_entry(handle, new_dentry, old->inode)
11 ASSN retval = (T#1)
12 CALL (T#2) = ext4_current_time(old_dir)
13 ASSN old_dir->i_mtime = (T#2)
14 ASSN old_dir->i_ctime = (T#2)
15 CALL ext4_dec_count(handle, old_dir)
16 CALL ext4_inc_count(handle, new_dir)
17 CALL (T#3) = ext4_current_time(new_dir)

⋆18 ASSN new_dir->i_mtime = (T#3)
⋆19 ASSN new_dir->i_ctime = (T#3)
⋆20 CALL ext4_mark_inode_dirty(handle, new_dir)

21 CALL ext4_mark_inode_dirty(handle, old_dir)
22 ASSN retval = 0

Table 2: Simplified symbolic conditions and expressions of a
success path (RETN=0) for ext4_rename(). In order to reach the
return statement (top section), the conditions (middle section) should
be satisfied under a set of side-effects (bottom section). ⋆ represents
expressions related to the ext4 rename patch in Figure 3. S# means a
symbolic expression, I#means an integer value, C#means a constant,
and T# means a temporary variable.

commonalities of file systems and generating bug reports if
it finds any deviant behavior among them. However, since
file systems are large and complex software that implement
different design decisions (e.g., on-disk layout), it is chal-
lenging to compare different file systems in the first place. To
address these challenges, we propose two statistical path com-
parison methods (§4.5). In this section, we elaborate on our
path-sensitive and context-aware static analysis techniques,
which use symbolic execution at the compilation pipeline to
compare multiple implementations at the source code level.

4.1 Merging Source Code in a File System
File systems are tightly coupled, large software. For example,
ext4, XFS, and btrfs are composed of 32K, 69K, and 85K
lines of code, respectively. For accurate comparison, inter-
procedural analysis is essential for obtaining precise symbolic
execution contexts and environments. However, most publicly
available static analyzers can perform interprocedural anal-
ysis of only limited scope within a code base. In particular,
the Clang static analyzer, which JUXTA relies on, cannot go
beyond the boundary of a single file for the inter-procedural
analysis [4].

To work around this problem, we develop a source code
merge stage that combines each file system’s files into one
large file, thereby enabling a simple inter-procedural analysis
within a file system module. The source code merge phase
first parses a build script of the file system to determine
all required source files and configuration options; it then
parses these source files to resolve conflicts among file-

1 // [commit: 53b7e9f6] @fs/ext4/namei.c
2 int ext4_rename(struct inode *old_dir, ...
3 struct inode *new_dir, ...) {
4 ...
5 + new_dir->i_ctime = new_dir->i_mtime \
6 + = ext4_current_time(new_dir);
7 + ext4_mark_inode_dirty(handle, new_dir);
8 ...
9 }

Figure 3: A patch for a semantic bug in ext3/4: update mtime and
ctime of a directory that a file is renamed to (see §2.1 and Table 2).

scoped symbols, such as static variables, functions, structs,
forward declarations, header files, etc. The process is largely
automatic; 49 out of 54 file systems were automatically
handled, and the rest required some specific rewriting (e.g.,
conflicted symbols defined by complex macros).

4.2 Exploring Paths to the End of a Function
To compare multiple file systems, JUXTA collects execution
information for each function. It constructs a control-flow
graph (CFG) for a function and symbolically explores a CFG
from the entry to the end (typically, return statement). To
gather execution information across functions, JUXTA inlines
callee functions and creates a single CFG. To prevent the path
explosion problem, we set the maximum inlined basic blocks
and functions to 50 and 32, respectively, thereby limiting the
size of intermediate results to less than half a terabyte. While
exploring a CFG, JUXTA performs range analysis by leverag-
ing branch conditions to narrow the possible integer ranges of
variables. In JUXTA, a single execution path is represented as
a five-tuple: (1) function name (FUNC), (2) return value (or an
integer range) (RETN), (3) path conditions (integer ranges of
variables) (COND), (4) updated variables (ASSN), and (5) callee
functions with arguments (CALL). Table 2 shows a simplified
(e.g., no type information) example of symbolic condition
extraction for a successful path (RETN=0) for rename() in
ext4.

JUXTA’s symbolic expression is rich, as it was performed
at the C level rather than on low-level instructions (e.g.,
LLVM-IR). For example, it understands macros that a prepro-
cessor (cpp) uses, fields of a struct, and function pointers.
This design decision not only increases the accuracy of the
analysis, but also makes the generated report more human-
readable, which is critical to identifying false positives. As
JUXTA explores two possible paths at each branch condi-
tion, the generated path conditions are flow-sensitive and
path-sensitive. For 54 Linux file systems, JUXTA extracts
8 million execution paths and 260 million conditions that
aggregate to 300 GB.

4.3 Canonicalizing Symbols
Extracted path information at the C level is not a form well-
suited for comparison because each file system may use dif-
ferent symbol names for the same data (e.g., arguments).
For example, ext4 uses old_dir and GFS2 uses odir as the
first argument of inode_operations.rename(). In our sym-
bol canonicalization pass, JUXTA transforms extracted path

365

0.5 0.5 0.3

Per-path histogram Per-filesystem histogram Histogram distance
VFS histogram

int cad_rename(flag) {
 if (flag & F_C)
 return -EPERM;
}

int foo_rename(flag) {
 if (flag & F_A)
 return -EPERM;

 if (flag & F_B)
 return -EPERM;
}

int bar_rename(flag) {
 if (flag & F_A && flag & F_B)
 return -EPERM;
}

+ =

1.0

1.0

1.0 1.0

0.5 0.5 0.5 0.5

=

F_A F_B F_C

1.0

flag

flag

flag

flag
p1

p2

=
F_A F_B F_C

1.0

0.5 0.5

0.0 0.0

F_A F_B F_C

0.7

0.3

0.3

0.5 0.5

= 1.3

= 0.3

= 1.7

Σ/3 =

-EPERM on rename()

F_A F_B F_C

Figure 4: Histogram representation of rename() in three contrived file systems (foo, bar and cad) on the -EPERM path. Histogram-based
comparison represents a universal variable (flag) as one dimension (x-axis). To describe rename(), it computes the average of all file system
histograms, and deducts the average from per-file system histograms for comparison. For example, foo is sensitive (+0.5) and cad is insensitive
(−0.5) on the F_A flag. Globally, cad behaves the most differently (deviant) from foo and bar (1.7) in terms of -EPERM path.

information into a directly comparable form across file sys-
tems. The key idea is to represent symbolic expressions by
using universally comparable symbols such as function ar-
guments, constants, function returns, global variables, and
(some) local variables. Symbol names in inlined functions
are renamed to those of the VFS entry function. For example,
old_dir of ext4 and odir of GFS2 become canonicalized to
the common symbol, $A0, indicating the first argument of a
function. Please note that Table 2 is not canonicalized for clar-
ity of exposition. After symbol canonicalization, semantically
identical symbols (e.g., the same arguments of the identical
VFS interface) have a matching string representation, which
facilitates comparison over different file systems.

4.4 Creating the Path Database
To avoid performing expensive symbolic execution over
and over again, we create a per-file system path database
for applications such as checkers and specification extrac-
tors to easily use the extracted path information. The path
database is hierarchically organized with function name, re-
turn value (or range), and path information (path conditions,
side-effects, and callee functions). Applications can query
our path database using a function name or a return value as
keys. In addition, we created a VFS entry database for appli-
cations to easily iterate over the same VFS entry functions
(e.g., ext4_rename(), btrfs_rename()) of the matching VFS
interface function (e.g., inode_operations.rename()). Most
file systems have multiple entry functions for several VFS
operations. For example, in the case of xattr operations,
ext4 has different entry functions for each namespace (e.g.,
ext4_xattr_trusted_list() for the trusted namespace and
ext4_xattr_user_list() for the user namespace). In such
cases, we create multiple sets of VFS entry functions so that
JUXTA applications can compare functions with the same
semantics. The 54 file systems in Linux kernel 4.0-rc2 have
2,424 VFS entry functions total. To handle the massive vol-
ume of the path database, JUXTA loads and iterates over the
path database in parallel.

4.5 Statistical Path Comparison
Even with the canonicalized path database, it is not meaning-
ful to compare multiple different file systems. Because all file
systems employ different design decisions (e.g., disk layout)
and features (e.g., snapshot), naively representing path infor-
mation in a logical form (e.g., weakest precondition [10, 23])
or relying on constraint solvers [11, 22] will lead one to con-
clude that all file systems are completely different from each
other. In this section, we describe two statistical methods
to compute the deviation and commonality of different file
systems from noisy path information.
Histogram-based comparison. The integer ranges, such
as return values and path conditions, constitute features in
model generation and comparison. To efficiently compare
these multidimensional integer ranges (i.e., multiple features),
we propose a histogram-based comparison method, which
is popular in image processing [26]. The advantage of our
histogram-based representation is that we can reuse well-
established standard histogram operations [26]. JUXTA first
encodes integer ranges into multidimensional histograms for
comparison and uses distances among histograms to find
deviant behaviors in different file systems. A standard (and
intuitive) way to measure distance between two histograms
is to measure the area size of non-overlapping regions.

Overall, JUXTA’s histogram-based comparison is com-
posed of four steps (Figure 4 illustrates an example on
rename()): (1) it transforms each element of return values
and path conditions into a single histogram (per-path his-
togram); (2) if the comparison involves multiple execution
paths (e.g., paths that return the same value), JUXTA aggre-
gates multiple histograms from the previous step (per-file
system histogram); (3) JUXTA builds the stereotypical path
information of a VFS interface by calculating the average his-
tograms of multiple file systems (VFS histogram); (4) JUXTA
finally compares each file system’s histogram (i.e., per-file
system histogram) with the averaged histogram (i.e., VFS
histogram) by computing a distance between them.

366

In particular, in the first step, one integer range is repre-
sented as a start value, an end value, and height. Naturally, its
start and end values are set to symbolic execution results in
our path database (e.g., constant values determining a path
condition). Then, a height value is normalized so that the
area size of a histogram is always 1. Since each histogram
has the same area size, the distance measure (i.e., computing
non-overlapping area size between histograms) that we com-
pute in the last step can fairly compare histograms under the
constraint that each execution path exhibits the same level of
importance.

In the second step, to present common features in each file
system, we combine multiple per-path histograms into a per-
file system histogram using a union operation on histograms.
The union of two histograms is obtained by superimposing
the two histograms and taking the maximum height for their
overlapping regions. It is used to combine multiple instances
of path information of the same function returning the same
value in a file system.

Next, in the third step, we compute an average of multiple
per-file system histograms to extract the generic model on
each VFS interface. As with the union operation, the average
of N histograms is obtained by stacking N histograms and
dividing each one’s height by N. We consider the average
of multiple file systems’ histograms as the stereotypical
path information of a VFS interface. One nice property
of the average operation is that ranges of commonly used
variables retain their great magnitudes and ranges of rarely
used variables (mostly, file system-specific regions) fall in
magnitude.

Lastly, we measure the differences between each file
system (i.e., per-file system histogram) and its stereotype
(i.e., the VFS histogram). Although there are various ways
to compute distance between two histograms [39, 48, 53],
we used the simple yet computationally efficient method,
histogram intersection distance [53]. The distance between
two histograms is defined as the size of their non-overlapping
regions. Also, the distance in multidimensional histogram
space is defined as the Euclidean distance in each dimension.
In our histogram-based framework, finding a bug is finding
file system path information that is far from the stereotype
(i.e., the average or VFS histogram). Figure 4 shows the
histogram representation of rename() for three file systems
on the -EPERM path. We explain how our checkers use this in
the next section.
Entropy-based comparison. Histogram-based comparison
is for the comparison of multidimensional range data. To
find deviation in an event, we use information-theoretic
entropy [52]. In JUXTA, such events can occur in one
of two cases: how a flag is used for a function (e.g.,
kmalloc(*,GFP_KERNEL) or kmalloc(*,GFP_NOFS)); or how
a return value of a function is handled (e.g., ret != 0 vs
IS_ERR_OR_NULL(ret)).

VFS interface

Return value listxattr mknod remount rename statfs

-EDQUOT JFS - OCFS2 - OCFS2
-EIO † JFS - - ext3/JFS -
-EPERM F2FS - - - -
-EOVERFLOW - btrfs - - -
-EROFS - - ext4 - OCFS2

Table 3: The return codes of some file systems that are not specified
in the man page for the VFS interfaces. JUXTA marked them as
deviant behaviors. An interesting point is that the POSIX manual
defines -EIO whereas it is not mentioned in the Linux programmer’s
manual (marked †) for rename().

JUXTA calculates the entropy of each VFS interface for
an event. By definition, this entropy can be either maximum,
when events completely occur in a random fashion, or zero,
when only one kind occurs. So, a VFS interface whose
corresponding entropy is small (except for zero) can be
considered as buggy. Among the file systems that implement
the VFS interface with small entropy, the file system with
the least frequent event can be considered buggy. We explain
how our checkers and specification extractor use this method
in the next section.
Bug report ranking. JUXTA ranks all of the generated
bug reports by using the following quantitative metrics. For
histogram-based checkers, the occurrence of a bug is more
likely for a greater distance value, whereas for entropy-based
checkers, a smaller (non-zero) entropy value indicates greater
heuristic confidence that a bug has been found. Program-
mers can leverage these generated reports by prioritizing the
highest-ranked bugs first, as many of JUXTA’s high-ranked
reports are for true-positive bugs, as we show in §7.3.

5. Applications
In this section, we introduce eight checkers that are built on
top of the database for symbolic path conditions and statistical
schemes to compare different code bases.

5.1 Cross-checking File System Semantics
All file systems are different in design, features, and goals,
but at the same time they share important commonalities:
their external behaviors (e.g., POSIX compliance) and (for
all Linux file systems) their compliance with rules defined in
the VFS layer. The VFS layer defines interface functions
that concrete file systems should implement, and it also
defines VFS objects, such as superblock, inode, and dentry.
Interestingly, many file systems have surprising similarities
to ext2/3/4 as we can see from their file structure, function
decomposition, and naming convention. As a result, a bug
seen in a file system likely exists in other file systems;
for example, the rename() bug in §2.1 was first fixed in
ext3, and subsequently in ext4 [2]. Based on this intuition,
we developed four checkers that cross-check file system
semantics to find bugs.

367

Return code checker. Our first checker cross-checks the
return codes of file systems for the same VFS interface, and
reports whether there are deviant error codes in file systems.2

It creates a per-file system return histogram by aggregating all
return values in all paths and computes the average histogram
of all file systems (i.e., VFS histogram). Distances between
the VFS and per-file system histograms are measured, and
VFS interfaces of file systems with large distance values
are reported as bugs. Our bug reports include deviant return
values by analyzing non-overlapping regions. Our checker
found deviant return codes in some file systems that are not
specified in the man page (Table 3).
Side-effect checker. To discover missing updates, our
checker compares side-effects for a given VFS interface
and a return value. It encodes side-effects into a histogram by
mapping each canonicalized symbolic variable (e.g, the first
argument of rename()) to a unique integer, regardless of the
file systems. As two file systems update more common vari-
ables, larger overlapping regions in their histograms cause the
distance between them to reduce. File system-specific vari-
ables will occur once, so their impact is naturally scaled down
by averaging histograms. Thus, our checker finds deviant
updates in commonly updated variables.
Function call checker. Deviant function calls can be related
to either deviant behavior or a deviant condition check.
Similar to the side-effect checker, our function call checker
encodes function calls into histograms by mapping each
function to a unique integer and finds deviant function calls
by measuring the distance to the average.
Path condition checker. To discover missing condition
checks, our checker encodes the path conditions of a file sys-
tem into a multidimensional histogram. One unique symbolic
expression is represented as one dimension of the histogram
(Figure 4). For example, the path conditions of Table 2 (L3–
L9) are represented as a seven-dimensional histogram. Multi-
ple execution paths for the same return value are represented
as a single histogram by aggregating each execution path.
Since symbolic expressions are already canonicalized in §4.3,
the same symbolic expressions are considered in the same di-
mension of the histogram regardless of the file system. Also,
if a path condition is file system-specific, it is naturally scaled
down while averaging histograms. Thus, JUXTA cross-checks
common path conditions among file systems.

5.2 Extracting File System Specification
Given the enriched information from JUXTA, we extract the
latent specification from the file system implementations in
Linux. The extracted specification is particularly useful for
novice developers who implement a file system from scratch,
as it can be referred to a starting template, or even for experts
who maintain the mature code base, as it gives a high-level
summary of other file system implementations. Extracting

2 In Linux kernel 4.0-rc2, 147 of 173 VFS interfaces are non-void.

1 [Specification] @inode_operations.setattr:
2 int setattr(struct dentry *dentry, struct iattr *attr) {
3 @[CALL] (17/17) RET < 0:
4 inode_change_ok(dentry->inode, attr)
5 @[COND] (10/17) RET = posix_acl_chmod(...):
6 attr->ia_valid & ATTR_MODE
7 ...
8 }

1 // @v4.0-rc2/fs/ext3/inode.c:3241
2 int ext3_setattr(struct dentry *dentry, struct iattr *attr) {
3 // sanity check
4 error = inode_change_ok(dentry->inode, attr);
5 if (error)
6 return error;
7

8 // update ACL entries.
9 const unsigned int ia_valid = attr->ia_valid;

10 if (ia_valid & ATTR_MODE)
11 rc = posix_acl_chmod(inode, inode->i_mode);
12 ...
13 }

Figure 5: JUXTA’s latent specification for setattr(), and simplified
ext3_setattr() code. The latent specification captures the common
function call (inode_change_ok()) and the common flag check
(ia_valid & ATTR_MODE) with respect to return value ranges.

latent specifications is similar to finding deviant behaviors,
but its focus is more on finding common behaviors. We report
side-effects, function calls, or path conditions if any one of
these is commonly exhibited in most file systems.

For example, Figure 5 illustrates a latent specification of
setattr(). According to JUXTA, setattr() should perform
an inode_change_ok() check and handle its error. Although
error is checked if it is zero, JUXTA captures that only a
negative return value can be used to indicate an error. Also,
10 file systems commonly invoke posix_acl_chmod() if attr
has a ATTR_MODE flag. One should consider following this
pattern when implementing the setattr() interface.

5.3 Refactoring Cross-module Abstraction
The most common type of bug fixes in file systems is the
maintenance patch (45%) [42]. In particular, since the VFS
and file systems have been co-evolving, finding commonal-
ities in file systems and promoting them to the VFS layer
are critical to improving the maintainability of file systems.
In this respect, the latent specification described in §5.2 can
offer a unique refactoring opportunity because it can be used
to identify redundant implementations of all VFS functions
and it gives new insights beyond the cross-module boundary.
More importantly, the identified code snippet can be refac-
tored to the upper VFS layer so that each file system can ben-
efit from it without redundantly handling the common case.
For example, as shown in Figure 5, the permission checks
using inode_change_ok() can be promoted to the VFS layer;
MS_RDONLY (see §2.3) can also be enforced commonly at the
VFS layer; page_unlock() and page_cache_release() can
be uniformly handled at the VFS layer (see §2.2).

5.4 Inferring Lock Semantics
Given per-path conditions and side-effects, the lock checker
emulates current locking states (e.g., which locks are held

368

1 // @v4.0-rc2/gfs2/glock.c:2050
2 int gfs2_create_debugfs_file(struct gfs2_sbd *sdp) {
3 sdp->debugfs_dir = debugfs_create_dir(...);
4 if (!sdp->debugfs_dir)
5 return -ENOMEM;
6 }

1 // @v4.0-rc2/ubifs/debug.c:2384
2 int dbg_debugfs_init_fs(...) {
3 dent = debugfs_create_dir(...);
4 if (IS_ERR_OR_NULL(dent))
5 goto out;
6 ...
7 out:
8 err = dent ? PTR_ERR(dent) : -ENODEV;
9 return err;

10 }

Figure 6: GFS2 checks if the return value of debugfs_create_dir()
is NULL, but UBIFS checks if its return value (pointer) is NULL or
an error code. It turns out that debugfs_create_dir() can return
-ENODEV if DEBUG_FS is not configured. So the caller should check
for both error codes, or a system crash may result. JUXTA’s error
handling checker found 7 such bugs.

or released so far) and at the same time keeps track of
which fields are always accessed or updated while holding
a lock (e.g., inode.i_lock should be held when updating
inode.i_size). Our lock checkers have two distinctive fea-
tures that use path-sensitive symbolic constraints. One is a
context-based promotion that promotes a function as a lock
equivalent if all of its possible paths return while holding a
lock. Our checker can help users in prioritizing the report
based on context information (e.g., patterns of other VFS im-
plementations). Based on lock orders and information from
linux/fs.h and documentation, we could cross-validate the
inferred lock semantics3.

5.5 Inferring Semantics of External APIs
The semantics of external API invocations include two parts:
the argument(s) used to invoke the API and the checks for
the return value.

The incorrect use of arguments can result in serious
consequences such as deadlock. For example, file systems
should not use the GFP_KERNEL flag to allocate memory in
their IO-related code because the kernel memory allocator
will recursively call the file system code to write back dirty
pages. To avoid such deadlock cases, GFP_NOFS should be
used instead. In fact, this is the most common bug pattern
among the concurrency bugs in file systems [42].

Handling return values is important because kernel func-
tions have different behaviors for different return values. For
example, for functions returning a pointer, some of them can
return NULL on error, some encode an error code as the re-
turned pointer, or in some cases, do both. If the caller misses
a check, dereferencing the incorrect pointer may crash the
kernel (Figure 6).

For the same VFS interface, argument usage and handling
return values should be very similar because the same inter-
face has high-level semantics. Based on this intuition, we

3 linux/Documentation/filesystem/locks.txt

Component Lines of code

Symbolic path explorer 6,180 lines of C/C++
Source code merge 1,025 lines of Python
Checkers 2,805 lines of Python
Spec. generator 628 lines of Python
JUXTA library 1,708 lines of Python

Total 12,346 lines of code

Table 4: Components of JUXTA and an estimate of their complexi-
ties in terms of lines of code.

developed two checkers that can identify such bugs without
information about their complex semantics.
Argument checker. The argument checker is similar to the
function call checker but is specialized to understand the
semantics of different parameters. Given the execution paths
of the same VFS call returning a matching value, it collects
invocations of external APIs and the arguments passed to the
API. It then calculates entropy values based on the frequency
of flags (e.g., GFP_KERNEL vs. GFP_NOFS). If the entropy value
is small, this means there are only few deviations in the usage
of flags and such deviations are likely to be bugs.
Error handling checker. The error handling checker is sim-
ilar to the path condition checker, but it checks all file system
functions besides entry functions. To identify incorrect han-
dling of return values, including missing checks, the checker
first collects the conditions for each API along all execu-
tion paths. It then calculates an entropy value for each API
based on the frequency of check conditions (e.g., ret != 0
vs IS_ERR_OR_NULL(ret) in Figure 6). Like the argument
checker, if the entropy value is small, then there are only a
few deviations in error handling and the checker reports such
deviations as bugs.

6. Implementation
JUXTA is 12K LoC in total: 6K lines of C/C++ for its
symbolic path explorer and 6K lines of Python for checkers,
code merge, and their libraries (Table 4). We have built
our symbolic path explorer by modifying Clang 3.6, a VFS
entry database for Linux kernel 4.0-rc2, and eight different
checkers by leveraging JUXTA’s libraries.

7. Evaluation
Our evaluation answers the following questions:

• How effective is JUXTA’s approach in discovering new
semantic bugs in file systems in Linux? (§7.1)

• What kinds of semantic bugs can JUXTA detect in the file
systems (known semantic bugs)? (§7.2)

• What are the plausible reasons for JUXTA to generate false
error reports (false positives)? (§7.3)

Experimental setup. We applied JUXTA to Linux kernel 4.0-
rc2, the latest version at the time of this writing, and ran all
checkers for 54 file systems in stock Linux. All experiments

369

FS Module Operation Error Impact #bugs Y S

9P vfs_file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 4y P
ADFS dir.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 >10y P

dir_fplus.c data read [E] incorrect return value application 1 >10y ✓
super.c super operation [E] incorrect return value application 5 >10y ✓

AFS file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 8y P
super.c mount option parsing [E] missing kstrdup() return check system crash 1 8y P

AFFS file.c page I/O [C] missing unlock()/page_cache_release() deadlock 2 >10y ✓
file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 6y P
super.c mount option parsing [E] missing kstrdup() return check system crash 1 10y ✓

BFS dir.c data read [E] incorrect return value application 2 >10y ✓
dir.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 7y P

blockdev block_dev.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 6y P
btrfs extent_io.c fiemap_next_extent() [E] incorrect error handling application 1 4y ✓

file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 8y P
Ceph caps.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 6y P

addr.c page I/O [S] missing page_cache_release() DoS 1 5y ✓
dir.c readdir(), symlink() [E] missing kstrdup() return check system crash 2 6y ✓
super.c mount option parsing [E] missing kstrdup() return check system crash 2 6y ✓
xattr.c set_xattr(), remove_xattr() [E] missing kstrdup() return check system crash 2 6y ✓

CIFS connect.c mount option parsing [M] missing kfree() DoS 3 6y ✓
file.c waiting for posix lock file [E] missing check consistency 2 3y ✓
file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 4y P

Coda file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 >10y P
EcryptFS file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 4y P
EXOFS file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 4y P
ext2 file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 6y P
ext4 super.c mount option parsing [E] missing kstrdup() return check system crash 2 5y ✓
FUSE file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 10y P
GFS2 file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 4y P

glock.c debugfs file and dir creation [E] incorrect error handling system crash 5 8y ✓
HFS dir.c file / dir creation [E] incorrect return value application 2 >10y ✓

inode.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 5y P
HFSplus dir.c symlink and mknod creation [E] incorrect return value application 2 5y ✓

inode.c metadata inode sync [E] missing error check system crash 2 >10y P
inode.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 5y P

HPFS file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 4y P
namei.c rename [S] missing update of ctime and mtime application 4 >10y ✓
super.c mount option parsing [E] missing kstrdup() return check system crash 1 7y ✓

JBD2 † transaction.c journal transaction [C] try to unlock an unheld spinlock deadlock, consistency 2 9y ✓
JFFS2 file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 >10y P
JFS file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 >10y P
LogFS segment.c read_page_cache() [E] incorrect error handling system crash 2 5y P

super.c read_page_cache() [E] incorrect error handling system crash 2 6y P
MINIX dir.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 5y P
NCP file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 >10y P
NFS dir.c / file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 5y P

nfs4client.c update NFS server [E] missing kstrdup() return check system crash 1 2y ✓
nfs4proc.c client ID hanlding [E] missing kstrdup() return check system crash 5 1y ✓

NFSD fault_inject.c debugfs file and dir creation [E] incorrect error handling system crash 2 4y ✓
NILFS2 file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 6y P
NTFS dir.c / file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 4y P
OCFS2 xattr.c get xattr list in trusted domain [S] missing CAP_SYS_ADMIN check security 1 6y ✓
OMFS file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 5y P
QNX4 dir.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 5y P
QNX6 file.c file and directory fsync() [S] missing MS_RDONLY check consistency 1 3y P
ReiserFS dir.c / file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 5y P

super.c mount option parsing [E] missing kstrdup() return check system crash 1 7y P
SquashFS symlink.c reading symlink information [E] incorrect return value application 2 6y P
UBIFS dir.c create/mkdir/mknod/symlink() [C] incorrect mutex_unlock() and i_size update deadlock, application 4 <1y ✓

file.c page I/O [E] missing kmalloc() return check system crash 1 7y P
UDF file.c page I/O [S] missing mark_inode_dirty() consistency 1 1y P

file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 5y ✓
inode.c page I/O [E] incorrect return value application 1 8y ✓
namei.c symlink() operation [E] missing return value system crash 1 8y ✓
namei.c rename [S] missing update of ctime and mtime application 2 >10 y ✓

UFS file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 5y P
inode.c update inode [E] incorrect return value application 2 8y P

XFS xfs_acl.c ACL handling [C] incorrect kmalloc() flag in I/O context deadlock 3 7y ✓
xfs_file.c file and directory fsync() [S] missing MS_RDONLY check consistency 2 4y P
xfs_mru_cache.c disk block allocation [C] incorrect kmalloc() flag in I/O context deadlock 1 8y ✓

Table 5: List of new bugs discovered by JUXTA in Linux kernel 4.0-rc2. The total number of bugs reported is 118, of which 65 have been
confirmed. P in the rightmost column represents submission of a patch; a ✓represents the patch has been either reviewed or applied. Out of 54
file systems, JUXTA found bugs in 39 file systems and found one bug per 5.8K LoC. The reported semantic bugs are difficult to find, as their
latent period is over 6.2 years on average.

370

Bug type Cause Detected / Total

[S] State incorrect state update ∗7 / 8
incorrect state check †5 / 6

[C] Concurrency miss unlock 1 / 1
incorrect kmalloc() flag 1 / 1

[M]Memory leak on exit/failure 2 / 2

[E] Error code miss memory error 1 / 1
incorrect error code 2 / 2

Table 6: The completeness of JUXTA’s results. We synthetically
introduced 21 known bugs in Linux’s file system implementations
from PatchDB [42] and applied JUXTA to see if it could detect the
classes of bugs. In total, JUXTA successfully detected 19 bugs out
of 21 and missed two cases due to its limitations (see §7.3).

were conducted on a 64-bit Ubuntu 14.04 machine with 8×10-
core Xeon E7-8870 2.4GHz and 512 GB RAM.

7.1 New Bugs
Our checkers reported 2,382 bugs total for 54 file systems in
Linux. Two authors, who had no prior experience with the
Linux file system code, inspected bug reports from March
19 to March 24 in 2015. They reviewed the 710 top-ranked
bug reports given time constraints and found 118 new bugs in
39 different file systems (see Table 7 for details). They also
made and submitted bug patches during that period; a few
critical ones were quickly applied in a testing branch or in the
mainline Linux. JUXTA found one bug in every 5.8K LoC.
The average latent period of these bugs is over 6.2 years. This
shows that JUXTA is effective in discovering long-existing
semantic bugs. Some of these bugs are critical and hard-to-
find; for example, though four incorrect kmalloc() flag bugs
in XFS can cause a deadlock, they have existed for 7–8 years.
Incorrect return value. Our return code checker found
that implementations of super_operations.write_inode()
in ufs and inode_operations.create() in BFS have bugs
not returning -EIO. Instead, UFS and BFS return the wrong
error code, -ENOSPC and -EPERM, respectively. As previous
studies [32, 42, 47] show, incorrect handling of error codes
is quite common in file systems (about 10% of bugs).
Missing updates. Our side-effects checker found missing
updates in HPFS. In rename(), HPFS does not update the
mtime and ctime of new and old directories. In file systems,
incorrect updates may lead to data inconsistency or malfunc-
tioning applications. Also, incorrect state updates are the most
common bugs among semantic bugs (about 40%) [42], but
they are the hardest ones to find using existing static checkers
without deep semantic knowledge.
Missing condition check. Our function call checker and
path condition checker found a missing condition check in
OCFS2. Its implementation of xattr_handler.list() for
the trusted namespace does not have a capability check.
This function is used for accessing extended attributes in
the trusted namespace, which are visible and accessible only
to processes that have CAP_SYS_ADMIN (i.e., usually super

user). The missing capability checks can lead to security
vulnerabilities or data corruption. Every file system operation
needs proper condition checks to filter out access without
capability or given improper user data (e.g., path name).
Lock bugs. JUXTA found eight lock bugs in AFFS, Ceph,
ext4/JBD2, and UBIFS, all of which are fixed in the upstream
Linux repository. Unlike traditional lock checkers, including
the built-in Sparse, JUXTA can reason about correct lock
states from other file system implementations: all paths of
write_end() commonly unlock and release a page in most
file systems, except two paths in AFFS. A similar bug was
found in write_begin() of Ceph. Note that two unlock bugs
in ext4/JBD2 were typical; two unlocks were not paired
correctly due to its complex if/else structure. Detecting
lock bugs is not only extremely difficult (requiring deep
understanding of context), but the consequences of these
bugs are critical: any lock bug can lead to the deadlock of the
entire file system and result in loss of cached data.
Inconsistent use of external APIs. Static analyzers typ-
ically lack execution context and domain-specific knowl-
edge unless a special model is given. After comparing
usage patterns of external APIs in file system code, our
checker reported a deviant usage of kmalloc(): regarding a
vfs_mount() implementation, other file systems commonly
use kmalloc() with GFP_NOFS, but XFS uses kmalloc() with
GFP_KERNEL. Our checker, without complex semantic correct-
ness knowledge,4 can statically identify such errors.

Similarly, JUXTA found 50 misuses of external APIs (e.g.,
memory allocation like kstrdup(), incorrect error handling
of the debugfs interface, etc.) in AFS, AFFS, Ceph, DLM,
ext4, GFS2, HPFS, HFSplus, NFS, OCFS2, UBIFS, and
XFS, which all result in dereferencing invalid pointers and
thus potentially cause system crashes.

7.2 Completeness
To evaluate JUXTA’s completeness, we collected 21 known
file system semantic bugs from PatchDB [42]. We synthesized
these bugs into the Linux Kernel 4.0-rc2 to see if JUXTA
could identify them. Table 6 shows the result of JUXTA
execution, as well as bug categorizations. JUXTA was able
to identify 19 out of 21 bugs. JUXTA missed one bug due to
the complex structure of a buggy function (marked ∗) that
our symbolic executor failed to explore. Another bug was
introduced too deeply from the entry point function, and the
error condition was not visible with our statistical comparison
schemes (marked †).

7.3 False Positives
As explained in §4.5, JUXTA ranks bug reports by quanti-
tative code deviation metrics. Table 7 shows the number of
4 The GFP_KERNEL flag is okay in most cases but it should not be used in
the I/O related code of file systems. With the GFP_KERNEL flag, the VM
memory allocator kswapd will call file system code to write dirty pages for
free memory so it results in a deadlock. Our fix in XFS changes the flag to
GFP_NOFS to prevent the recursive call of file system code.

371

Checker # reports # verified New bugs # rejected

Return code checker 573 150 2 0
Side-effect checker 389 150 6 0
Function call checker 521 100 5 0
Path condition checker 470 150 46 2
Argument checker 56 10 4 0
Error handling checker 242 100 47 21
Lock checker 131 50 8 1

Total 2,382 710 118 24

Table 7: Bugs reported by each JUXTA checker and bugs manually
verified. For bugs with high confidence after manual verification, we
provided patches to corresponding developer communities. Some
are confirmed as true bugs and some are revealed as non-bugs.

generated bug reports and statistics for each checker. We care-
fully examined the top-ranked 710 bug reports of the total
2,382 found by JUXTA. Of these 710, we identified 142 as
potential bugs and the remaining 568 as false positives. We
submitted bug reports for the 142 potential bugs to the respec-
tive file systems’ developers, who confirmed that 118 of these
were bona fide bugs, while 24 were not—i.e., false positives.
Thus, of the 710 bug reports we examined carefully, 118 were
bona fide bugs and the aggregated 592 were false positives,
for an overall false positive rate of 83%.5 As noted in §4.5,
because JUXTA ranks the bugs it reports, the programmer
can prioritize investigating the highest-ranked bug reports,
which are most likely to be true positives. Figure 7 illustrates
that there are many true positives among the bug reports that
JUXTA ranks highly.

To further understand what causes JUXTA to generate
false positive reports, we first classified bug reports and bug
statistics by each checker and then further classified the false
bug reports.

7.3.1 Classification by Checkers
Since each checker is designed to find different types of bugs,
it is difficult to directly compare the effectiveness of each
checker by simply comparing the number of new bugs found.
In this regard, we instead focus on the negative aspects of
JUXTA here, i.e., the rejected bugs. All of these rejected bugs
are file-system specific so JUXTA (and even the file system
maintainers) considered them as bugs.

The path condition checker found two incorrect condition
checks in xattr-related code in F2FS. But they are actually
correct since they are used only for a particular xattr that is
only inherent to F2FS; its usage pattern was contrary to the
normal convention.

The error handling checker found 21 incorrect error han-
dling codes in OCFS2 and debugfs. They were once con-
firmed, but after further investigation they were reverted since
it is not possible to build OCFS2 without debugfs, although
most file systems check such combinations to support kernel
builds without debugfs.

5 We do not yet know the false-positive rate for the remaining lower-ranked
1,672 bugs, as we have not yet investigated the ground truth for these bugs.

0

10

20

30

40

50

60

0 100 200 300 400 500C
um

ul
at

iv
e

tr
ue

-p
os

iti
ve

bu
gs

Histogram-based ranking

0

10

20

30

40

50

60

0 20 40 60 80 100C
um

ul
at

iv
e

tr
ue

-p
os

iti
ve

bu
gs

Entropy-based ranking
Figure 7: Cumulative true-positive bugs, sorted by ranking reported
by JUXTA. For histogram-based checkers, bug reports are ranked
in descending order, while for entropy-based checkers, bug reports
(except for ones with zero entropy) are ranked in ascending order.
JUXTA’s statistical path comparison and bug report ranking can
effectively save programmers effort by letting them investigate the
highest-ranked reports first.

Finally, our lock checker found an incorrect implementa-
tion of a write_end() of address_space operation in UDF,
which does not unlock the page cache. But it is actually cor-
rect because the code is for a special case, in which data is
inlined to an inode structure and thus data does not have a
corresponding page.

7.3.2 Classification by Types

Different file system types. Each file system supports a
different set of features: SquashFS is designed as a read-
only file system; ramfs uses main memory without backing
storage; Ceph is designed as a distributed file system. JUXTA
reports that Ceph has no capability check for file system
operations. But since Ceph relies on servers for the capability
check (i.e., it does not trust its clients), JUXTA’s bug reports
are false alarms. If JUXTA compares file systems only of the
same type, our approach might incur fewer false positives.
Different implementation decision. Even in the same type
of file system, different implementation decisions could cause
false alarms in JUXTA. For example, btrfs is the only file
system returning -EOVERFLOW at mkdir(). It occurs when
there is no room in a lead node of the tree structure in btrfs.
Since the POSIX specification on mkdir() [3] does not have
the case of returning -EOVERFLOW, there is no matching error
code for this case.
Redundant codes. For symlink(), JUXTA reports that F2FS
does not check the length of the symbolic link, but many
other file systems, including ext2 and NILFS2, have the

372

0
5M

10M
15M
20M
25M
30M
35M
40M

btrfs ext2 ext3 ext4 JFS ReiserFS XFS

N
um

be
ro

fc
on

di
tio

n

condition (no-merge)
unknown condition (no-merge)

condition (merge)
unknown condition (merge)

Figure 8: When JUXTA performs an inter-procedure analysis within
a file system module, the symbolic path conditions contain two times
more concrete expressions.

length check. However, surprisingly, since the VFS func-
tion symlinkat() already checks the length of a symbolic
link before calling symlink(), the length check in ext2 and
NILFS2 is redundant. Considering that VFS and concrete file
systems are co-evolving, such redundant code could exist.
Also, it shows that JUXTA can be extended to a refactoring
suggestion tool by comparing file system behavior across
layers (e.g., VFS, file system, and block layer).
Incorrect symbolic execution results. Besides the above
true deviant cases, most false positives are caused by the
inaccurate symbolic expressions or contexts. There are two
major sources of inaccuracy: JUXTA unrolls a loop only
once so analysis results related to loops could be inaccurate;
JUXTA limits the depth of inlining to prevent path explosion
and to terminate the analysis within a reasonable time. As
in Figure 8, around 50% of path conditions are unknown due
to the uninlined function calls, although JUXTA improves the
precision of symbolic expressions with its code merge (50%
more concrete expressions).

7.4 Performance
For our experiments, we use an 80-core Xeon server with 512
GB RAM. When analyzing 54 Linux file systems composed
of roughly 680K lines of pure code, it takes roughly five
hours: 30 minutes for merging (e.g., resolving conflicts) each
file system’s code into one large file for precise analysis,
another 30 minutes for path exploration, which generates
300 GB of intermediate results. JUXTA requires two hours to
preprocess and create the database (another 300 GB) for path
conditions and side-effects that all other checkers rely on (a
one-time cost). Then, all checkers take roughly two hours
total to scan all possible paths in the database. Since the
generated database consists of checker-neutral data, we will
make it publicly available. This will allow other programmers
to easily develop their own checkers. Also, this result shows
that JUXTA can scale to even larger system code within a
reasonable time budget.

8. Discussion
As a static analyzer, JUXTA is neither sound nor complete:
it reports bugs incorrectly (§7.3) and misses some bugs

(§7.2). However, the reports Juxta generates are useful, as
JUXTA found one real bug per 5.8K LoC in mature Linux file
systems.

JUXTA’s approach in general is not well-suited for discov-
ering bugs that are specific to a file system’s design, logic or
implementation. However, we found that our external API
checker helps a lot in finding such bugs without file system
specific knowledge (e.g., incorrectly handling the error codes
of debugfs APIs). We believe that JUXTA’s approach can
also be applied in detecting implementation-specific bugs
(across the entire Linux code base) and perhaps by abstract-
ing and comparing the way each file system interacts with its
neighboring or underlying layers (e.g., block devices).

JUXTA’s approach can be considered a general mechanism
to explore two different semantically equivalent implementa-
tions without special or domain-specific knowledge of their
internal model. Therefore, JUXTA has huge potential for other
application domains that have multiple implementations of
common features. All modern Web browsers, for example,
implement (or support) the W3C DOM/HTML [57] and EC-
MAScript specifications [27]. Using JUXTA’s approach, their
compatibility can be systematically examined and summa-
rized in terms of standard interfaces.

We believe JUXTA is promising for code bases with multi-
ple implementations that comply with similar specifications,
such as standard POSIX libraries, TCP/IP network stacks,
and UNIX utilities (busybox, coreutils, or Cygwin). JUXTA’s
approach is also a good fit for self-regression testing (in the
spirit of Poirot [37]), in which one could treat multiple pre-
vious versions and a new version as semantically equivalent
implementations.

9. Related work
Two large bodies of previous research motivate the develop-
ment of JUXTA: one is bug studies in systems code, OSes [15,
17, 41, 45, 67], file systems [42, 68], and distributed sys-
tems [69]; the other is a body of work that changed our
perspective on bugs—for example, viewing them as de-
viant behavior [24, 29] or as a different behavior among
multiple implementations [6, 25]. While previous research
focuses on shallow bugs [24, 29, 32, 68], relies on man-
ual inspection [6, 25], or requires special models to find
bugs [9, 64, 66, 68], JUXTA statistically compares multiple
implementations having the same semantics (i.e., the same
VFS interface) to find deep semantic bugs.

Broadly, previous research on validating or enforcing sys-
tem rules (or software invariants) can be classified into three
approaches: model checking, formal proof, and automatic
testing.
Model checking. Meta Compilation [5, 28] proposed using
system-specific compiler extensions to check domain-specific
rules. JUXTA incorporates its workflow but adopts path-
sensitive and context-aware analysis as proposed by ESP [21].
Model checking has been explored in the context of file

373

systems by FiSC [66], by EXPLODE [64] with a better
reduction technique [33], and by EIO [32, 47] for error
propagation. SDV [7] performs model checking on device
drivers and CMC [44] checks the correctness of popular
protocols. Since JUXTA statistically infers a latent model
by comparing various implementations, it naturally incurs
a higher false positive rate than typical model checks, but
JUXTA’s approach is general (requiring no specific models),
and thus has huge potential for other application domains that
have multiple implementations.
Specification and formal proof. Formal methods have
been applied to system software such as compilers [40],
browsers [35], file systems [16], device drivers [49], operating
system components such as BPF [61], and the entire operating
system [38] in order to provide strong guarantees of their
high-level invariants (e.g., security properties or functional
correctness). The key emphasis of JUXTA is that, unlike these
solutions that require programmers to provide formal models
or specifications, JUXTA derives such models directly from
existing implementations and then automatically identifies
deviant behaviors from the extracted model.
Symbolic execution. One promising way to explore all
possible paths of a program is to use symbolic execution [9,
12–14, 60, 62], which JUXTA employs at its core. KLEE [13]
is a pioneer in this space and proposes an idea of validating
the compatibility of multiple software implementations such
as busybox and coreutils. However, symbolic execution
cannot be directly applied to compare multiple file systems, as
they are all completely different from each other but behave
similarly. JUXTA’s goal is to identify such latent rules that all
file systems implement in their own manner. Woodpecker [20]
and EXE [14, 65] used symbolic execution with given system
rules to validate file system implementations, but they largely
focus on finding shallow bugs (e.g., memory leaks), unlike
JUXTA, which focuses on semantic bugs.
Inferring models. Unlike the three aforementioned tech-
niques that require manual models or specific rules in val-
idating code, a few projects focus on inferring such rules,
with minimum user involvement or in a fully automated
way: finite state machines [19], copy-and-pasted code snip-
pets [41], locking patterns (at runtime) [50], inconsistent code
patterns [29, 63], network protocols [9], setuid implementa-
tions (manually) [25], and error handling [24, 32]. However,
JUXTA infers its model by comparing multiple existing im-
plementations that obey implicit rules.

10. Conclusion
In this paper, we propose JUXTA, a static analysis tool that
extracts high-level semantics by comparing and contrasting
multiple implementations of semantically equivalent software.
We applied JUXTA to 54 different file systems in Linux and
found 118 previously unknown semantic bugs in 39 different
file systems (one bug per 5.8K), of which 30 bugs have
existed for more than 10 years. Not only do our empirical

results look promising, but the design of JUXTA is general
enough to easily extend to any software that has multiple
implementations.

11. Acknowledgment
We would like to thank our shepherd, Brad Karp, and the
anonymous reviewers for their helpful feedback, which sub-
stantially improved the content and presentation of this pa-
per. We also would like to acknowledge the proofreading
efforts of our operations staff. This research was supported
by the NSF award DGE-1500084, the ONR under grant
N000141512162, the DARPA Transparent Computing pro-
gram under contract No. DARPA-15-15-TC-FP-006, and the
ETRI MSIP/IITP[B0101-15-0644].

References
[1] Skipped files with –listed-incremental after rename,

2003. http://osdir.com/ml/gnu.tar.bugs/2003-10/
msg00013.html.

[2] Fix update of mtime and ctime on rename, 2008.
http://linux-ext4.vger.kernel.narkive.com/
Cc13bI74/patch-ext3-fix-update-of-mtime-and-
ctime-on-rename.

[3] mkdir(), 2013. The IEEE and The Open Group, The
Open Group Base Specifications Issue 7, IEEE Std 1003.1,
2013 Edition http://pubs.opengroup.org/onlinepubs/
9699919799/functions/mkdir.html.

[4] Checker developer manual, 2015. http://clang-analyzer.
llvm.org/checker_dev_manual.html#idea.

[5] ASHCRAFT, K., AND ENGLER, D. Using programmer-written
compiler extensions to catch security holes. In Proceedings of
the 23rd IEEE Symposium on Security and Privacy (Oakland)
(Oakland, CA, May 2002), pp. 143–160.

[6] AVIZIENIS, A. The N-Version approach to fault-tolerant
software. IEEE Transactions of Software Engineering 11, 12
(Dec. 1985), 1491–1501.

[7] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V., LICHT-
ENBERG, J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI,
S. K., AND USTUNER, A. Thorough static analysis of de-
vice drivers. In Proceedings of the ACM EuroSys Conference
(Leuven, Belgium, Apr. 2006), pp. 73–85.

[8] BESSEY, A., BLOCK, K., CHELF, B., CHOU, A., FULTON,
B., HALLEM, S., HENRI-GROS, C., KAMSKY, A., MCPEAK,
S., AND ENGLER, D. A few billion lines of code later: Using
static analysis to find bugs in the real world. Communications
of the ACM 53, 2 (Feb. 2010), 66–75.

[9] BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME, J.,
AND SONG, D. Towards automatic discovery of deviations
in binary implementations with applications to error detection
and fingerprint generation. In Proceedings of the 16th Usenix
Security Symposium (Security) (Boston, MA, Aug. 2007),
pp. 15:1–15:16.

[10] BRUMLEY, D., WANG, H., JHA, S., AND SONG, D. Creat-
ing vulnerability signatures using weakest preconditions. In
Proceedings of the 20th IEEE Computer Security Foundations

374

http://osdir.com/ml/gnu.tar.bugs/2003-10/msg00013.html
http://osdir.com/ml/gnu.tar.bugs/2003-10/msg00013.html
http://linux-ext4.vger.kernel.narkive.com/Cc13bI74/patch-ext3-fix-update-of-mtime-and-ctime-on-rename
http://linux-ext4.vger.kernel.narkive.com/Cc13bI74/patch-ext3-fix-update-of-mtime-and-ctime-on-rename
http://linux-ext4.vger.kernel.narkive.com/Cc13bI74/patch-ext3-fix-update-of-mtime-and-ctime-on-rename
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mkdir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mkdir.html
http://clang-analyzer.llvm.org/checker_dev_manual.html#idea
http://clang-analyzer.llvm.org/checker_dev_manual.html#idea

Symposium (Washington, DC, USA, 2007), CSF ’07, IEEE
Computer Society, pp. 311–325.

[11] BRUMMAYER, R., AND BIERE, A. Boolector: An efficient
SMT solver for bit-vectors and arrays. In Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2009,
pp. 174–177.

[12] BUCUR, S., URECHE, V., ZAMFIR, C., AND CANDEA, G.
Parallel symbolic execution for automated real-world software
testing. In Proceedings of the ACM EuroSys Conference
(Salzburg, Austria, Apr. 2011), pp. 183–198.

[13] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In Proceedings of the 8th Symposium
on Operating Systems Design and Implementation (OSDI) (San
Diego, CA, Dec. 2008), pp. 209–224.

[14] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. EXE: Automatically generating inputs
of death. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (Alexandria, VA,
Oct.–Nov. 2006), pp. 322–335.

[15] CHEN, H., CUTLER, C., KIM, T., MAO, Y., WANG, X.,
ZELDOVICH, N., AND KAASHOEK, M. F. Security bugs in
embedded interpreters. In Proceedings of the 4th Asia-Pacific
Workshop on Systems (APSys) (2013), pp. 17:1–17:7.

[16] CHEN, H., ZIEGLER, D., CHLIPALA, A., KAASHOEK, M. F.,
KOHLER, E., AND ZELDOVICH, N. Towards certified storage
systems. In Proceedings of the 15th Workshop on Hot Topics
in Operating Systems (HotOS) (May 2015).

[17] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND EN-
GLER, D. An empirical study of operating systems errors. In
Proceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP) (Chateau Lake Louise, Banff, Canada,
Oct. 2001), pp. 73–88.

[18] CORBET, J., KROAH-HARTMAN, G., AND MCPHER-
SON, A. Linux Kernel Development: How Fast
is it Going, Who is Doing It, What Are They Do-
ing and Who is Sponsoring the Work, 2015. http:
//www.linuxfoundation.org/publications/linux-
foundation/who-writes-linux-2015.

[19] CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH,
S., PASAREANU, C. S., AND ZHENG, H. Bandera: Extracting
finite-state models from Java source code. In Proceedings
of the 22nd international conference on software engineering
(ICSE) (2000), pp. 439–448.

[20] CUI, H., HU, G., WU, J., AND YANG, J. Verifying systems
rules using rule-directed symbolic execution. In Proceedings of
the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS)
(Houston, TX, Mar. 2013), pp. 329–342.

[21] DAS, M., LERNER, S., AND SEIGLE, M. ESP: Path-sensitive
program verification in polynomial time. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation (Berlin, Germany, June 2002),
pp. 57–68.

[22] DE MOURA, L., AND BJØRNER, N. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 2008, pp. 337–340.

[23] DIJKSTRA, E. W. A discipline of programming, vol. 1.
Prentice-Hall Englewood Cliffs, 1976.

[24] DILLIG, I., DILLIG, T., AND AIKEN, A. Static error detection
using semantic inconsistency inference. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation (San Diego, CA, June 2007),
pp. 435–445.

[25] DITTMER, M. S., AND TRIPUNITARA, M. V. The UNIX
process identity crisis: A standards-driven approach to setuid.
In Proceedings of the 21st ACM Conference on Computer and
Communications Security (Scottsdale, Arizona, Nov. 2014),
pp. 1391–1402.

[26] DUDA, R. O., HART, P. E., AND STORK, D. G. Pattern
classification. John Wiley & Sons, 2012.

[27] ECMA INTERNATIONAL. ECMAScript Language Specifica-
tion, June 2011. http://www.ecmascript.org/docs.php.

[28] ENGLER, D., CHELF, B., CHOU, A., AND HALLEM, S.
Checking system rules using system-specific, programmer-
written compiler extensions. In Proceedings of the 4th Sympo-
sium on Operating Systems Design and Implementation (OSDI)
(San Diego, CA, Oct. 2000).

[29] ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND

CHELF, B. Bugs as deviant behavior: A general approach to
inferring errors in systems code. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP)
(Chateau Lake Louise, Banff, Canada, Oct. 2001), pp. 57–72.

[30] FRYER, D., SUN, K., MAHMOOD, R., CHENG, T., BEN-
JAMIN, S., GOEL, A., AND BROWN, A. D. Recon: Verifying
file system consistency at runtime. In Proceedings of the 10th
USENIX Conference on File and Storage Technologies (FAST)
(2012).

[31] GOOCH, R. Overview of the linux virtual file system,
2007. https://www.kernel.org/doc/Documentation/
filesystems/vfs.txt.

[32] GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-DUSSEAU,
A. C., ARPACI-DUSSEA, R. H., AND LIBLIT, B. EIO: Error
handling is occasionally correct. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST)
(2008), pp. 14:1–14:16.

[33] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND

ZHANG, L. Practical software model checking via dynamic in-
terface reduction. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP) (Cascais, Portugal,
Oct. 2011), pp. 265–278.

[34] HUNT, G. C., AND LARUS, J. R. Singularity: Rethinking the
Software Stack. ACM SIGOPS Operating Systems Review 41,
2 (April 2007), 37–49.

[35] JANG, D., TATLOCK, Z., AND LERNER, S. Establishing
browser security guarantees through formal shim verification.
In Proceedings of the 21st Usenix Security Symposium (Secu-
rity) (Bellevue, WA, Aug. 2012), pp. 113–128.

[36] KARA, J. fs/udf/namei.c at v4.1, 2015.
https://github.com/torvalds/linux/commit/
3adc12e9648291149a1e3f354d0ad158fc2571e7.

375

http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2015
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2015
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2015
http://www.ecmascript.org/docs.php
https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
https://github.com/torvalds/linux/commit/3adc12e9648291149a1e3f354d0ad158fc2571e7
https://github.com/torvalds/linux/commit/3adc12e9648291149a1e3f354d0ad158fc2571e7

[37] KIM, T., CHANDRA, R., AND ZELDOVICH, N. Efficient
patch-based auditing for web application vulnerabilities. In
Proceedings of the 10th Symposium on Operating Systems
Design and Implementation (OSDI) (Hollywood, CA, Oct.
2012).

[38] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK,
J., COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT,
K., KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H.,
AND WINWOOD, S. seL4: Formal verification of an os kernel.
In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP) (Big Sky, MT, Oct. 2009), pp. 207–
220.

[39] KULLBACK, S., AND LEIBLER, R. A. On information and
sufficiency. The annals of mathematical statistics (1951), 79–
86.

[40] LEROY, X. Formal certification of a compiler back-end or:
Programming a compiler with a proof assistant. In Proceedings
of the 33rd ACM Symposium on Principles of Programming
Languages (Charleston, South Carolina, Jan. 2006), pp. 42–54.

[41] LI, Z., LU, S., MYAGMAR, S., AND ZHOU, Y. CP-Miner: A
tool for finding copy-paste and related bugs in operating system
code. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI) (San Francisco,
CA, Dec. 2004).

[42] LU, L., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,
AND LU, S. A study of Linux file system evolution. In
Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST) (2013), pp. 31–44.

[43] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT,
D., SINGH, B., GAZAGNAIRE, T., SMITH, S., HAND, S.,
AND CROWCROFT, J. Unikernels: Library operating systems
for the cloud. In Proceedings of the 18th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (Houston, TX, Mar. 2013),
pp. 461–472.

[44] MUSUVATHI, M. S., PARK, D., PARK, D. Y. W., CHOU, A.,
ENGLER, D. R., AND DILL, D. L. CMC: A pragmatic ap-
proach to model checking real code. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation
(OSDI) (Boston, MA, Dec. 2002).

[45] PALIX, N., THOMAS, G., SAHA, S., CALVÈS, C., LAWALL,
J., AND MULLER, G. Faults in Linux: Ten years later. In Pro-
ceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS) (Newport Beach, CA, Mar. 2011), pp. 305–318.

[46] PATOCKA, M. [Patch] hpfs: update ctime and mtime on
directory modification, 2015. https://lkml.org/lkml/
2015/9/2/552.

[47] RUBIO-GONZÁLEZ, C., GUNAWI, H. S., LIBLIT, B.,
ARPACI-DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C.
Error propagation analysis for file systems. In Proceedings
of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (Dublin, Ireland, June
2009), pp. 270–280.

[48] RUBNER, Y., TOMASI, C., AND GUIBAS, L. J. The earth
mover’s distance as a metric for image retrieval. International

journal of computer vision 40, 2 (2000), 99–121.

[49] RYZHYK, L., CHUBB, P., KUZ, I., LE SUEUR, E., AND

HEISER, G. Automatic device driver synthesis with Termite.
In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP) (Big Sky, MT, Oct. 2009), pp. 73–
86.

[50] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO,
P., AND ANDERSON, T. Eraser: A dynamic data race detector
for multi-threaded programs. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles (Saint-Malo,
France, Oct. 1997), pp. 27–37.

[51] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND

VYUKOV, D. AddressSanitizer: A Fast Address Sanity
Checker. In Proceedings of the 2012 ATC Annual Technical
Conference (ATC) (Boston, MA, June 2012), pp. 309–318.

[52] SHANNON, C. E. A mathematical theory of communication.
Bell system technical journal 27 (1948).

[53] SWAIN, M. J., AND BALLARD, D. H. Color indexing.
International journal of computer vision 7, 1 (1991), 11–32.

[54] THE IEEE AND THE OPEN GROUP. fsync(), 2013.
The Open Group Base Specifications Issue 7, IEEE
Std 1003.1, 2013 Edition, http://pubs.opengroup.org/
onlinepubs/9699919799/functions/fsync.html.

[55] THE IEEE AND THE OPEN GROUP. rename(), 2013.
The Open Group Base Specifications Issue 7, IEEE
Std 1003.1, 2013 Edition, http://pubs.opengroup.org/
onlinepubs/9699919799/functions/rename.html.

[56] THE LINUX PROGRAMMING INTERFACE. fync(), 2014.
Linux’s Programmer’s Manual, http://man7.org/linux/
man-pages/man2/fsync.2.html.

[57] THE WORLD WIDE WEB CONSORTIUM (W3C). Docu-
ment Object Model (DOM) Level 2 HTML Specification,
Jan. 2003. http://www.w3.org/TR/DOM-Level-2-HTML/
Overview.html.

[58] TORVALDS, L. fs/ubifs/file.c at v4.0-rc2, 2015.
https://github.com/torvalds/linux/blob/v4.0-
rc2/fs/ubifs/file.c#L1321.

[59] TORVALDS, L. inlucde/linux/fs.h at v4.0-rc2, 2015.
https://github.com/torvalds/linux/blob/v4.0-
rc2/include/linux/fs.h#L1688.

[60] WANG, X., CHEN, H., JIA, Z., ZELDOVICH, N., AND

KAASHOEK, M. F. Improving integer security for systems
with KINT. In Proceedings of the 10th Symposium on Operat-
ing Systems Design and Implementation (OSDI) (Hollywood,
CA, Oct. 2012), pp. 163–177.

[61] WANG, X., LAZAR, D., ZELDOVICH, N., CHLIPALA, A.,
AND TATLOCK, Z. Jitk: A trustworthy in-kernel interpreter
infrastructure. In Proceedings of the 11th Symposium on Oper-
ating Systems Design and Implementation (OSDI) (Broomfield,
Colorado, Oct. 2014), pp. 33–47.

[62] WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND

SOLAR-LEZAMA, A. Towards optimization-safe systems:
Analyzing the impact of undefined behavior. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(SOSP) (Farmington, PA, Nov. 2013), pp. 260–275.

376

https://lkml.org/lkml/2015/9/2/552
https://lkml.org/lkml/2015/9/2/552
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/rename.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/rename.html
http://man7.org/linux/man-pages/man2/fsync.2.html
http://man7.org/linux/man-pages/man2/fsync.2.html
http://www.w3.org/TR/DOM-Level-2-HTML/Overview.html
http://www.w3.org/TR/DOM-Level-2-HTML/Overview.html
https://github.com/torvalds/linux/blob/v4.0-rc2/fs/ubifs/file.c#L1321
https://github.com/torvalds/linux/blob/v4.0-rc2/fs/ubifs/file.c#L1321
https://github.com/torvalds/linux/blob/v4.0-rc2/include/linux/fs.h#L1688
https://github.com/torvalds/linux/blob/v4.0-rc2/include/linux/fs.h#L1688

[63] YAMAGUCHI, F., GOLDE, N., ARP, D., AND RIECK, K.
Modeling and discovering vulnerabilities with code property
graphs. In Proceedings of the 35th IEEE Symposium on
Security and Privacy (Oakland) (San Jose, CA, May 2014),
pp. 590–604.

[64] YANG, J., SAR, C., AND ENGLER, D. explode: A lightweight,
general system for finding serious storage system errors. In
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI) (Seattle, WA, Nov. 2006),
pp. 10–10.

[65] YANG, J., SAR, C., TWOHEY, P., CADAR, C., AND ENGLER,
D. Automatically generating malicious disks using symbolic
execution. In Proceedings of the 27th IEEE Symposium on
Security and Privacy (Oakland) (Oakland, CA, May 2006),
pp. 243–257.

[66] YANG, J., TWOHEY, P., AND DAWSON. Using model checking
to find serious file system errors. In Proceedings of the 6th
Symposium on Operating Systems Design and Implementation

(OSDI) (San Francisco, CA, Dec. 2004), pp. 273–288.

[67] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUN-
DARAM, L. N., AND PASUPATHY, S. An empirical study
on configuration errors in commercial and open source sys-
tems. In Proceedings of the 23rd ACM Symposium on Operat-
ing Systems Principles (SOSP) (Cascais, Portugal, Oct. 2011),
pp. 159–172.

[68] YOSHIMURA, T., AND KONO, K. Who writes what check-
ers?—learning from bug repositories. In Proceedings of the
10th Workshop on Hot Topics in System Dependability (Hot-
Dep) (Broomfield, CO, Oct. 2014).

[69] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G. R.,
ZHAO, X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Sim-
ple testing can prevent most critical failures: An analysis of
production failures in distributed data-intensive systems. In
Proceedings of the 11th Symposium on Operating Systems De-
sign and Implementation (OSDI) (Broomfield, Colorado, Oct.
2014), pp. 249–265.

377

	Introduction
	Case Study
	Bugs in inode.rename()
	Bugs in address_space.write_begin/end()
	Bugs in man Pages, Documents, and Comments

	Overview
	Design
	Merging Source Code in a File System
	Exploring Paths to the End of a Function
	Canonicalizing Symbols
	Creating the Path Database
	Statistical Path Comparison

	Applications
	Cross-checking File System Semantics
	Extracting File System Specification
	Refactoring Cross-module Abstraction
	Inferring Lock Semantics
	Inferring Semantics of External APIs

	Implementation
	Evaluation
	New Bugs
	Completeness
	False Positives
	Classification by Checkers
	Classification by Types

	Performance

	Discussion
	Related work
	Conclusion
	Acknowledgment

