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Abstract—Today, IaaS cloud providers are dynamically mini-
mizing the cost of datacenters operations, while maintaining the
Service Level Agreement (SLA). Currently, this is achieved by
the live migration capability, which is an advanced state-of-the-
art technology of Virtualization. However, existing migration
techniques suffer from high network bandwidth utilization,
large network data transfer, large migration time as well as
the destination’s VM failure during migration. In this paper,
we propose Reliable Lazy Copy (RLC) - a fast, efficient and
a reliable migration technique. RLC provides a reasonable so-
lution for high-efficiency and less disruptive migration scheme
by utilizing the three phases of the process migration. For
effective network bandwidth utilization and reducing the total
migration time, we introduce a learning phase to estimate the
writable working set (WWS) prior to the migration, resulting
in an almost single time transfer of the pages. Our approach
decreases the total data transfer by 1.16 x - 12.21x and the total
migration time by a factor of 1.42x - 9.84x against the existing
approaches, thus providing a fast and an efficient, reliable VM
migration of the VMs in the cloud.

Keywords-Virtualization, Live migration, Reliability, Dy-
namic Resource Management

I. INTRODUCTION

Virtualization has become one of the key technologies in

the era of Cloud Computing. Today, data centers are contin-

uously employing the virtualized architecture to run applica-

tions inside virtual machines (VMs) that are mapped on to

physical machines. This is accomplished by using techniques

such as full virtualization, hardware assisted virtualization

[1],[2]. Virtualization technology enables efficient utilization

of hardware resources by server consolidation [3],[4] and

demand based dynamic allocation of resources. The ability

to run multiple VMs on a pool of networked physical

machines and migrate them from one physical machine to

another forms the basis for building dynamic Infrastructure-

as-a-Service (IaaS) clouds. Live migration of VMs in such

IaaS clouds provides significant opportunities for efficient

utilization of resources through server consolidation and

dynamic resource provisioning while adhering to SLAs and

decreasing the cost of datacenter operations.

During the live migration process, an active VM is mi-

grated from one physical host (source) to another physical

host (destination) over the network. This requires a VM

state transfer which consists of a snapshot of main memory

and device states. From a cloud provider perspective, a

VM migration should be transparent enough to have an

unnoticeable fast migration by neither exposing the latency

to the user nor affecting the other collocated VMs. However,

existing migration approaches, such as pre-copy [5] and

post-copy [6], are inefficient for highly utilized physical

machines inside a datacenter. These approaches are quite

inefficient in case of workloads with large working set size

or even memory intensive workloads. Furthermore, they can

incur significant performance overhead by consuming huge

amount of network bandwidth. Besides that, the post-copy

approach which in a way is efficient than pre-copy [6] but

does not provide any destination VM guarantee during the

migration period. This becomes another concern from a

cloud provider perspective.

In this paper, we propose reliable lazy copy (RLC)

approach consisting of all the three phases of the pro-

cess migration, namely - push phase, stop-and-copy phase

and pull phase [5]. It is designed to retain the beneficial

features of both the pre-copy and post-copy approaches.

The disadvantages of both pre-copy and post-copy approach

are circumvented by introducing a learning phase prior to

the push phase. During the learning phase an estimate of

writable working set (WWS) is obtained. This results in an

almost single time transfer of pages. Similarly, the post-copy

approach’s reliability issue is addressed by modifying the

pull-phase, so that the VM can safely resume execution on

the source machine even if the destination machine crashes.

To the best of our knowledge, RLC approach provides

a reliable and efficient migration capability which works

productively in highly utilized physical nodes.

We discuss the limitations of other migration schemes in

Section II. Then, the proposed RLC approach is presented in

detail in Section III followed by the implementation details

in Section IV. Later, the relevant experimental results are

discussed in Section V. Later, the related work is summa-

rized in Section VI, and Section VII draws the conclusion

and future work.

II. OTHER MIGRATION SCHEMES LIMITATION

To motivate our RLC approach, this section discusses the

key limitations of the existing approaches that fail to provide

effective migration.
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Figure 1. Perceivable downtime is the duration between the two vertical
lines. Downtime (60 ms) is negligible when compared to the perceivable
downtime (6sec). Apache Bench tool was used to generate the network
requests for the post-copy live migration approach.

A. Pre-copy migration and its pitfalls

In the pre-copy approach, the main memory pages of

the VM are transferred to the destination without halting

the VM. Pages which got dirtied during the last round

are retransmitted in the next round. This iterative copying

of dirtied pages continues until a small writable working

set (WWS) is identified. This phase can also stop after a

preset number of iterations. After this, the VM is halted and

the remaining dirtied pages along with the device states is

transferred to the destination followed by resuming of the

VM on the destination.

The problem with this approach is that a large WWS

and a high page dirtying rate causes a huge number of

page retransmissions. This results in unnecessary CPU and

network bandwidth utilization. As the VM downtime is

dependent on the WWS, it can be quite high in case of

large WWS. Therefore, this approach is not a cost-effective

approach from the cloud providers perspective.

B. Post-copy migration and its pitfalls

Post-copy approach works by transferring the VM’s de-

vice states to the destination once the migration command is

issued. Later, when the pages are required by the VM after

resuming, those pages are fetched by the destination over

the network via a remote page fault handler. We introduce

a new performance metric with respect to the post-copy

approach as perceivable downtime. It is a time period during

which the VM is unresponsive after resuming execution on

the destination. Figure 1 illustrates the difference between

the downtime and perceivable downtime. The perceivable

downtime is approximately 6 seconds when compared to

the actual downtime which is 60 milliseconds. During that

period, the response of the server to the requests is zero even

after resuming on the destination.

The major issue with the post-copy approach is the very

high perceivable downtime for memory intensive workloads

as well as the unreliability of the pull phase of the approach.

If the VM fails due to an issue on the destination physical

machine during the migration process, we cannot restore it

back, as the VM state is distributed across the source and

destination machines.

III. LAZY COPY (LC) APPROACH FOR LIVE MIGRATION

In this section, we propose the lazy copy approach which

tries to minimize the total data transfer and downtime in

the pre-copy approach and the perceivable downtime in the

post-copy approach, while optimally utilizing the network

bandwidth at the same time. Further, our reliable lazy copy

(RLC) approach is tolerant to fail-stop behaviour of the

destination physical machine. We discuss both of the lazy

copy and reliable lazy copy approaches along with other

optimizations in the subsections below.

A. Lazy Copy Migration Algorithm

The various phases, earlier described by Clark et al. [5],

of the lazy copy algorithm is as follows:

1) Push phase: The entire memory is transferred to the

destination in a single pass without suspending the

VM.

2) Stop-and-copy phase: The VM is then suspended

and the dirty bitmap along with the device states

are transferred to the destination. The dirty bitmap

indicates the pages that got dirtied during the push

phase.

3) Pull phase: The VM is resumed. Whenever the VM

accesses a page that got dirtied during the push phase,

a major page fault gets generated which results in

a network fault. This network fault is resolved by

retrieving the corresponding page from the source with

the help of dirty bitmap that helps in resolving the

page fault either locally or a transfer over the network.

B. Learning Phase

During the stop-and-copy phase, no pages get transmitted.

Thus, a page gets transferred in the push phase and option-

ally in the pull phase. The page is fetched from the source in

the pull phase, only if it gets dirtied. Therefore, we introduce

a learning phase before the push phase to minimize the

number of pages that gets transferred twice.

When the VM migration process is initiated, the learning

phase starts to estimate the pages present in the writable

workable set. These pages will not be transmitted during

the push phase as they are most likely to be dirtied again

and have to be retransmitted during the pull phase. If the

migration is initiated at time t, then the learning phase

happens during the time interval [t, t + δ]. The parameter

δ has an impact on the accuracy of estimated WWS and the

overall migration time.

We use an adaptive histogram to estimate the WWS.

The learning phase interval [t, t + δ] is divided into equal

sized epochs and at the end of each epoch, Algorithm 1 is

invoked. The algorithm estimates the WWS by computing a

histogram of page usage with a forgetting factor α. The array
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Algorithm 1 Estimating WWS using adaptive histograms.

1: sum← 0.0
2: for i← 1, nopages do
3: hist[i]← αdb[i] + (1− α)hist[i]
4: sum← sum+ hist[i]
5: end for
6: average← sum

nopages

7: for i← 1, nopages do
8: if hist[i] ≥ average then
9: wwsapx[i]← 1

10: end if
11: end for

Figure 2. VM is suspended and its state is checkpointed during the
time intervals marked (i). The VM state at the source gets asynchronously
updated after each checkpoint.

hist holds the histogram of a page usage for every page and

the array db holds the dirty bitmap during the last epoch.

The bitmap array wwsapx contains the estimated WWS. We

set δ to three seconds and α to 0.8 in our experiments.

C. Reliable Pull Phase - RLC

A VM can fail during its service life cycle when either

the underlying physical machine or the host operating system

running on it fails. We assume a fail-stop behaviour of all the

components in the subsequent discussion. During the migra-

tion process, failure of either the source or the destination

machine will have different implications depending on the

phase of migration as discussed below.

• Push phase and stop-and-copy phase: Failure of the

source will result in permanent loss of VM. There will

not be any affect if the destination fails as the source

still has the current active state of the VM.

• Pull phase: The VM is active on the destination ma-

chine. Since the VM state transfer from source to

destination is still under progress, the source machine

may contain the current state of the VM partially.

Failure of either the source or the destination results

in VM failure.

Thus, pre-copy approach is tolerant to destination failures

whereas the post-copy and lazy copy approaches are not,

due to the unreliable pull phase. In this work, we modify

the pull phase to make our LC migration scheme tolerant to

destination machine failures. The pull phase is divided into

epochs and at the end of each epoch the incremental changes

in the VM state at the destination are checkpointed to a

secondary storage device such as NAS. The secondary stor-

age device is accessible to both the source and destination

machines through a network. After checkpointing the latest

state, the destination notifies the source so that the source

can update its state asynchronously. This reduces the VM

recovery time on the source in case of a destination failure.

The externally visible state of a VM during each epoch is

buffered and released only after successfully checkpointing

the latest VM state to the disk. Since the VM is paused at the

end of each epoch, there will be a performance degradation.

And this degradation is only during the pull phase and it

is the cost we pay for reliability. If the destination machine

fails, then the VM can be restored at the source by using

the latest checkpointed state. The hard disk space consumed

by the log files generated during checkpointing depends on

the duration of the pull phase and is usually small.

1) Checkpointing Memory and Device States: The mem-

ory and the device states constitute the dynamic state of a

VM. So checkpointing them is equivalent to checkpointing

the VM state, which begins at the starting of the pull phase.

At the end of each epoch, the VM is suspended; its dirtied

pages and the device states are checkpointed and committed.

Then the source machine is notified which in turn starts

updating the state of the VM asynchronously. After the

notification to the source, the VM resumes execution and

the next epoch starts. Figure 2 summarizes this procedure.

2) Network buffering: Today, most of the applications

rely on TCP connections which provide strong service

guarantees. Thus, there is no requirement of the packet

replication, since their loss will be accounted as a transient

network failure. This fact simplifies the network buffering

problem in which the packets get queued for transmission

and are only transmitted after the VM state is successfully

checkpointed at the end of each epoch. Thus any VM state

exposed to the external world can always be recovered from

the checkpointed state.

3) Disk State Consistency: During the pull phase, all the

disk operations are made synchronous. Before an update is

made to a disk during an epoch, the old data is copied to

a shared log file and then the new version is synchronously

committed to the disk. If the destination VM fails, the disk

changes are reverted back with the help of the old disk state

that is present on the shared log file between the source and

the destination.

D. Other Optimizations

We incorporated some optimizations in our lazy copy

VM migration implementation which are discussed in the

following subsections.

1) Block Based Paging: Handling page faults involve

two kinds of overhead - process invoking the page fault

handler and network protocol overhead. These overheads can

be reduced by fetching a contiguous group of pages which

we call as a page blocks, for every page fault. Table I shows
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Table I
DATA TRANSFER OVERHEAD WHILE TRANSFERRING PAGE BLOCKS OF

DIFFERENT SIZE.

Pages transferred Size (KB) Data transferred (KB) Overhead (%)

1 4 4.53 13.28
4 16 16.72 4.52

16 64 65.49 2.23
64 256 259.84 1.5

128 512 516.47 0.87
256 1024 1028.92 0.48

1024 4096 4115.66 0.48

the data transfer overhead while transferring page blocks

of different sizes. If the block size is too large, then the

page fault handling time increases, which proportionately

hampers the VM progress. So the block size can be neither

too large nor too small. Through experimentation, we chose

a block size of 128 pages in our implementation. During the

page block transfer, only the dirtied pages are transferred.

The page block associated with a page i is defined as the

pages falling in the interval [i− α ∗ 128, i+ (1− α) ∗ 128].
We chose α = 0.25 heuristically in our implementation.

2) Active Background Page Prefetching: Instead of fetch-

ing page blocks only on a demand basis, a low priority

background thread proactively fetches dirtied pages from

the source. This decreases the number of major page faults

and hence the perceivable downtime. Whenever the page

fault handler gets activated, the background page prefetching

thread gets suspended. For post-copy and lazy copy migra-

tion techniques, page prefetching is important to completely

transfer the VM state in deterministic time. Otherwise,

some pages could remain on the source for arbitrarily long

times until a page fault occurs. This unnecessarily hogs the

resources on the source machine.

3) Page Compression: The entire main memory is di-

vided into logical blocks of size 32MB. During the push

phase, each block is iteratively sent to the destination

machine after applying the LZO compression algorithm [7].

LZO (real-time compression) algorithm requires a buffer of

size B bytes to compress and store a block of size B bytes.

Due to this, the size of the logical blocks for compression

cannot be arbitrarily large. However, page blocks transferred

during the pull phase are not compressed.

4) Multi-Threaded Push Phase: If enough compute

power is available and the available network bandwidth is

not sufficiently utilized, we can deploy more than one thread

to carry out the push phase. If there are k threads, then the

main memory is divided into k segments of equal size. Each

thread compresses a segment of memory and transfers it to

the destination on a separate socket connection.

IV. IMPLEMENTATION DETAILS

The proposed lazy copy migration algorithm has been

implemented on Qemu 0.13 and KVM for Linux 3.6.3

kernel. The source code of Qemu/KVM is modified at

specific points related to memory allocation and migration.

A. Page Fault Handler

We use a client-server model to transfer pages from

the source to destination. The server resides on the source

machine, while the client is on the destination. During the

push phase, the main memory pages are transferred to the

destination reside in the virtual address space of client.

Whenever the VM accesses a page whose page table entry

(PTE) is not yet created in the page table, a page fault is

generated. The page fault handler refers to its page bitmap

to check if the client contains a latest version. The presence

of latest version results in creation of a new PTE, otherwise

the page is fetched over the network by communicating with

the server through the client and then the PTE is created.

B. Reliable Pull Phase

In the following subsections, we present various imple-

mentation details with respect to the reliable pull phase.

1) Memory and other device states: The dirty bitmap of

every epoch for checkpointing is obtained by tracking the

guest writes to memory which is the similar feature used

by the pre-copy approach through shadow page tables. The

identified dirtied pages, which are obtained at every epoch

and the device states are directly dumped to the epoch based

shared log file that is directly accessible to the source over

the network. The source updates its state using these log

files asynchronously and deletes them.

2) Network buffering: The network buffering mechanism

has been implemented as a Linux queuing discipline. The

inbound traffic is directly delivered to the guest but the

outbound traffic is queued until the current VM state has

been checkpointed. This is achieved by using the libnl

library[8] which provides a plug module to buffer and

release the packets through intermediate functional block

driver[9] which redirects the output to the bridge.

3) Disk commit: In QEMU, all the reads and writes to the

disk are asynchronous through asynchronous I/O (AIO). We

synchronously write the data to the shared log file shared

between source and destination (same as the disk block)

before committing the write request. This process continues

till the pull phase is over.

V. EXPERIMENTAL WORK

In this section, we present a detailed evaluation of the

lazy copy migration technique against the existing pre-copy

and post-copy approaches. Our test environment consists of

2 Dell Workstations with 12GB RAM. The source and the

destination machines are connected via a Gigabit Ethernet

switch. Network bandwidth is available for complete utiliza-

tion by the source and the destination machines. Each VM

is allocated 2GB of memory in all the experiments.

We chose applications and workloads, both real and syn-

thetic, with diverse characteristics for the evaluation process.

From SPEC CPU2006 [10], a memory intensive benchmark

(429.mcf) and a cpu intensive benchmark (401.bzip2)
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Figure 3. Perceivable downtime measured for various block sizes using
Apache Bench. lazy copy algorithm is used for VM migration.

are chosen. We have used Linux Kernel Compile (LKC), and

memcached [11] server which caches multiple key/value

pairs in the main memory. For load generation, we use

memaslap as client and it resides on a different machine.

Finally, we used a synthetic benchmark memtester (with

WWS as 1GB), which is a highly memory write intensive

program for finding faults in RAM.

A. Block Size Selection for the Pull Phase

We use perceivable downtime as the criteria for selecting

the block size during the pull phase. For block size selec-

tion, we use the naive pull phase which does not support

reliability. Figure 3 shows the perceivable downtime for

different block sizes. Network requests to the Apache server

running on the VM are generated by running the Apache

client program (Apache Bench) [12] on a machine different

from both the source and destination. Figure 3 shows that

the perceivable downtime is minimal when the block size is

128 pages. The perceivable downtime is the time period in

which the server does not respond to the client at the start

of pull phase. As the block size increases, the thread which

handles the demand paging requests will end up waiting

for the prepaging thread running in the background, as only

one of them will be active at the same time. This results in

increased freeze time of the VM process, thus exacerbating

the perceivable downtime.

B. Pre-copy, Post-copy Implementations and Lazy Copy

Variants

In our experiments, we used the existing implementation

of the pre-copy VM migration in the KVM hypervisor. The

KVM pre-copy implementation applies page compression to

the pages with same content. These are generally zero pages

and only single byte is transferred along with the page offset

information.

We implemented our own post-copy VM migration al-

gorithm in KVM to compare its performance against the

proposed approach. The post-copy implementation does a

block based prefetching of pages both in the background and

on an on-demand basis. It is identical to the LC pull phase.

Since the implementation is for hardware assisted VMs, the

ballooning based approach [13] cannot be used.

We implemented the following four variants of the LC

migration algorithm to measure the impact of various opti-

mizations.

1) lazy copy (LC): The lazy copy migration algorithm

without the learning phase. Niether page compression

nor multi-threading is used during the push phase.

However, pages with the same value throughout are

compressed by sending the corresponding value alone.

2) lazy copy learning (L2C): lazy copy implementation

from the above with a learning phase before the push

phase.

3) lazy copy learning-compression (L2C2): L2C im-

plementation with LZO algorithm based page com-

pression during the push phase. Since block based

compression is done, single byte page compression

used in LC and L2C does not apply.

4) lazy copy learning-compression -parallel (L2C2P ):

L2C2 implementation wherein the push phase is par-

allelized.

We use the acronyms PR and PO for pre-copy and post-

copy respectively. Henceforth, we use acronyms to refer to

various migration schemes.

C. Pre-copy vs Post-copy vs lazy-copy Variants

In this section, we compare the basic lazy-copy approach

and its optimized variants against the existing pre-copy and

post-copy algorithms. Table II show how pre-copy, post-

copy, lazy copy and lazy-copy learning migration approaches

compare against each other on various workloads. The

performance metrics used are application degradation, data

transferred, migration time and downtime.

1) Total Data Transferred: The data transferred during

the post-copy migration of a VM is around 2 GB (Table II).

This is as expected since the VM memory size is of 2 GB.

In the case of pre-copy approach, the total data transferred

depends on the working set size and the page dirtying rate.

The data transferred for write intensive applications like

mcf and memcached is substantially higher than their

VM size due to multiple page retransmissions. For bzip2,

the data transferred is less than the VM size. This is due

to the compression of zero pages. While for lazy copy,

it can be observed from the Table II that the lazy copy

approach outperforms pre-copy on all workloads. When the

learning phase is invoked in the lazy copy approach, it can

be noticed that even for write intensive applications with

working set size as large as the allocated VM size (mcf

and memcached), the data transferred in the lazy copy

approach almost matches that of post-copy. This shows that

the learning phase is effective in estimating the writable

working set which will not be transmitted during the push

phase. With the invocation of the learning phase, the total

data transfer gets decreased by a factor of 1.04x to 1.65x

against lazy copy and 1.08x to 5.92x against pre-copy.
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Table II
PERFORMANCE COMPARISON OF PRE-COPY (P), POST-COPY (PO), LAZY COPY(LC) AND LAZY COPY LEARNING (L2C) MIGRATION SCHEMES.

Total data transferred (MB) % Degradation Total migration time (s) Downtime (ms)

Workload PR PO LC L2C PR PO LC L2C PR PO LC L2C PR PO LC L2C

memtester 2206 2064 2014 1658 24.7 3.5 6.6 2.5 58.7 60.9 23.7 22.4 245 99 143 145
bzip2 892 2064 645 576 3.2 3.9 2.6 1.8 12.5 70.3 11.1 9.6 255 79 120 126
mcf 7234 2064 3489 2103 18.7 12.3 12.2 5.9 197.6 60.3 51.9 37.7 712 137 220 230
LKC 536 2064 519 498 18.8 12.6 5 4.3 8.7 75.7 8.5 7.9 212 41 55 63
memcached 14373 2064 3884 2429 64.8 9.2 8.9 5.2 302.3 74.5 57.4 35.8 8448 200 446 427

2) Total migration time: Total migration time for lazy

copy learning decreases by a factor of 1.3x - 8.4x for

pre-copy and 1.6x - 9.6x for post-copy. For the post-copy

approach, it can be noted from Table II that the migration

times are different for different workloads. This is due to the

variation in the number of major page faults that get gener-

ated for different workloads, even though the same amount

of data is being transferred. For pre-copy approach, the

migration times are proportional to the total data transferred

which is naturally high for write intensive workloads. lazy

copy approach outperforms the pre-copy and the post-copy

approaches, and lazy copy learning outperforms the lazy

copy approach on all the workloads. lazy copy outperforms

post-copy even on workloads mcf and memcached for

which it transfers more data than post-copy. This is due

to the presence of read-only pages in the working set

resulting in fewer network faults which leads to less network

bandwidth contention during the pull phase.

3) Application Performance Degradation: From Table II,

we can infer that the L2C algorithm outperforms all the

migration algorithms on every workload with a maximum

performance degradation under 6 percent. The application

performance degradation computed for lazy copy learning

includes the learning phase overhead. lazy copy algorithm

outperforms post-copy (1.01x) and pre-copy (1.01x to 1.57x)

approaches on all workloads, except on memtester where

post-copy does better than lazy copy. This is due to the load

on the source and destination machines while transferring

pages during the push and pull phases respectively. All the

migration algorithms show a relative performance degrada-

tion on write intensive workloads. However, the performance

degradation is substantial for the pre-copy approach, like

in the case of benchmarks memcached and memtester.

Even for a mixed workload like LKC, the performance

degradation for pre-copy is substantial when compared with

post-copy and lazy copy approaches.

4) Downtime: The general trend is that the downtime

is higher for write intensive workloads (refer Table II).

This is due to the excessive resource (especially pages)

utilization of the VM prior to the stop-and-copy phase. The

performance of the thread that performs the stop-and-copy

phase is effected due to that. Post-copy migration approach

performs consistently better than the rest of the techniques.

This is due to the minimal amount of data transfer that

happens during the stop-and-copy phase. Pre-copy approach

Table III
EFFECT OF PAGE COMPRESSION DURING PUSH PHASE ON LAZY COPY

(LC) AND LAZY COPY LEARNING (L2C) MIGRATION SCHEMES.

%
Degra-
dation

Total data trans-
ferred (MB)

Total migra-
tion time (s)

Workload L2C L2C2 L2C L2C2 L2C L2C2

memtester 2.5 2.4 1658 1199 22.4 16.4
bzip2 1.8 1.0 576 457 9.6 8.2
mcf 5.9 3.4 2103 1784 37.7 23.1
LKC 4.3 1.1 498 169 7.9 6.1
memcached 5.2 4 2429 1923 35.8 30.7

Figure 4. % CPU utilization during the push phase for lazy copy learning
(L2C), lazy copy learning-compression (L2C2) and parallel lazy copy
learning-compression (L2C2P ) approach.

performs the worst due to the large number of dirtied pages

that need to be transferred. lazy copy and lazy copy learning

does far better than pre-copy but do not outperform post-

copy.
D. Push Phase Page Compression

In this section, we present the impact of compressing

pages using the real time LZO algorithm in the push phase.

Pages are not compressed in the pull phase as the goal

there is to serve the pages as quickly as possible. Table III

shows the impact of page compression on different migration

metrics. The total data transfer gets decreased by a factor

of 1.83x to 7.47x for pre-copy, 1.16x to 12.21x for post-

copy and 1.26x to 2.94x for LC. Whereas the total data

transferred in the push phase of the naive lazy copy, gets

decreased by a factor of 1.1x to 5x. The migration time

denoted in the table also includes the compression time. The

total migration time gets decreased by a factor of 2.43x -

8.57x for post-copy and 1.42x - 9.84x for pre-copy. Figure 4

shows the CPU utilization by various migration schemes.

With the introduction of compression, the CPU utilization

increases by 16.78% to 30.13% in push phase, while the
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Table IV
EFFECT OF PARALLELIZING THE PUSH PHASE ON LAZY COPY

LEARNING-COMPRESSION (L2C2) MIGRATION SCHEME.

% Degradation Total migration time
(s)

Workload L2C2 L2C2P L2C2 L2C2P

memtester 2.4 1.7 16.4 12.9
bzip2 1.0 0.9 9.6 7.4
mcf 3.4 1.8 32.7 26.7
LKC 1.1 0.8 7.9 5.7
memcached 4 7.4 35.8 27.4

Table V
AVERAGE PAGE BLOCK SIZE FETCHED BY BOTH THE THREADS ALONG

WITH THE RATIO OF BACKGROUND VS ON-DEMAND THREAD.

Workload Ratio Effective Block size

memtester 1.6 80

bzip2 99 18.6

mcf 2.1 52.9

LKC 0.9 4.7

memcached 99 23

push phase time period decreases by an average factor of

1.5x (not shown in the Figure).

E. Push Phase Parallel Data Transfer

Table IV compares the performance of the parallel version

of lazy copy compression when two threads are employed

during the push phase with the single threaded version. It can

be observed that the application performance degradation

and migration time consistently improves in the parallel

version. The performance degradation of memcached in-

creases as the VM and the migration mechanism share the

same network link. Due to parallelization, the migration

mechanism demands more network bandwidth from the

shared link. Figure 4) shows the increase in the CPU

utilization due to push phase parallelization. If the source

machine has under utilized compute power in the form of

idle cores, this is actually an ideal usage. Depending upon

the criteria, the cloud providers can use this for VMs with

only memory and CPU intensive workloads.

F. Block Based Paging & Proactive Background Prepaging

Table V shows the average block size during the pull

phase for various workloads. For memory intensive applica-

tions, the average block is large, as there is more likelihood

of having continuous pages to constitute blocks. As the block

size increases, the number of major page faults and network

faults decrease. The network faults reduced by an average of

35.8 times with minimum being 4.7 times for LKC and the

maximum being 80 for memtester. Table V also shows

the ratio of pages fetched by the background thread versus

the on-demand thread. Fetching pages in the background

before they are faulted helps in reducing the perceivable

downtime. It can be observed that more pages are fetched by

the background thread when compared with the on-demand

Figure 5. Application degradation (%) when reliable pull phase is enabled.

thread for all workloads except for LKC. This is because of

irregular write access patterns.

G. Effect of Reliability

When we use the reliable pull phase in the lazy copy

learning-compression migration scheme, the application per-

formance degradation increases. This is due to synchronized

disk writes and periodic suspension of VM for checkpoint-

ing. Figure 5 shows the impact of reliability on the applica-

tion degradation. The performance degradation is substantial

for memory intensive workloads such as memtester, mcf

and memcached, since the time taken for checkpointing

a VM state is proportional to its WWS size per epoch.

Since bzip2 is compute intensive with small WWS, the

increase in the performance degradation is small. Due to

multiple writes, the performance degradation of LKC is also

substantial.

Correctness verification: In order to verify the working

of the designed reliable approach, we deliberately induced

network failure / process kill during the following phases:

(1) before the resumption of the VM at destination when all

the data has been transferred to the destination and it is about

to resume, (2) during the transient state of a VM between

two checkpoints (3) during the checkpointing phase, when

the VM’s state is written to the disk. The checkpoints were

taken every 50 milliseconds throughout the pull phase of

the lazy copy learning-compression approach. For every

workload and at every failure point, the source successfully

took over the execution. All the workloads continued to run

till successful completion.

VI. RELATED WORK

Pre-copy approach for live migration of VMs, derived

from process migration[14], has been a widely studied topic

during the last decade [5]. Clark et al. [5] proposed a pre-

copy approach on top of the Xen VMM with dynamic rate

limiting to increase the available network bandwidth utiliza-

tion and reduce large downtimes due to high page dirtying

rates. Svard et al. [15] proposed a technique wherein, the

incremental changes in dirtied pages are computed and

the incremental changes are transmitted to the destination

after applying a run-length encoding (RLE) compression

algorithm. Jin et al. [16] proposed a migration scheme which

uses an adaptive compression technique. Ibrahim et al. [17]
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proposed an online adaptive pre-copy algorithm for VMs

running HPC applications. Zhang et al. [18] tried to reduce

the total data transferred during the migration process by

using hash based fingerprints to find identical and similar

pages.

Hines et al. [13] proposed the post-copy live migration ap-

proach for para-virtualized VMs and implemented it on Xen

hypervisor. They used dynamic self-ballooning technique

and pre-paging technique to reduce the total data transferred

and network faults. We consider the HVMs from the Cloud

perspective where only HVMs are used to guarantee SLAs.

Cavilla et al. Hirofuchi et al. [19; 20] showed that post-

copy migration is suitable for VM consolidation when the

VM workloads are suddenly changed. They also used the

post-copy approach for instantaneous consolidation of the

VMs.

The closest work to our approach is that of Peng et al.

[21] . Peng et al. [21] provides a hybrid self-migration

technique for guests without the intervention of the hyper-

visor. Whereas our approach is guest agnostic and hence

requires no modifications to the guest operating system.

Other related work on hybrid migration include Luo et al.

[22], Nocalae and Cappello [23] and Zheng et al. [24] which

only talk about disk block based live migration, whereas our

technique concentrates on live migration where the disk is

already shared and memory becomes the critical state to be

transferred to the destination inside data centers.

Our reliable pull phase is similar to that of Remus [25].

Remus provides fault tolerance to fail-stop failures of a

physical host by asynchronously propagating its state to a

backup host at high frequency. We adapt the synchronous

disk writes in spite of its overhead due to the short pull

phase period. This is not applicable in the context of high

availability where checkpointing has to go on continuous

basis.
VII. CONCLUSIONS

We have designed and implemented a reliable lazy copy

live migration technique which provides fast and efficient

migration at a minimum cost. Our novel learning phase as

introduced prior to the push phase, which is used to estimate

the WWS, helps us in transferring the memory only once

while adhering to the SLAs. This leads to minimal source’s

resource utilization and an unnoticeable latency to the user.

Thus, our RLC approach provides a reliable and an efficient

migration capability, thus making it a promising technique

for the future data centers.
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