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Abstract—When multiple virtual machines (VMs) are
coscheduled on the same physical machine, they may undergo
a performance degradation. The performance degradation is
due to the contention for shared resources like last level cache,
hard disk, network bandwidth etc. This can lead to service-level
agreement violations and thereby customer dissatisfaction. The
classical approach to solve the coscheduling problem involves
a central authority which decides a coschedule by solving a
constrained optimization problem with an objective function
such as average performance degradation. In this paper, we use
the theory of stable matchings to provide an alternate game
theoretic perspective to the coscheduling problem wherein each
VM selfishly tries to minimize its performance degradation.
We show that the coscheduling problem can be formulated as
a Stable Roommates Problem (SRP). Since certain instances
of the SRP do not have any stable matching, we reduce the
problem to the Stable Marriages Problem (SMP) via an initial
approximation. Gale and Shapley proved that any instance of
the SMP has a stable matching and can be found in quadratic
time. From a game theoretic perspective, the SMP can be
thought of as a matching game which always has a Nash
equilibrium. There are distributed algorithms for both the SRP
and SMP problems. A VM agent in a distributed algorithm
need not reveal its preference list to any other VM. This allows
each VM to have a private cost function. A principal advantage
of this problem formulation is that it opens up the possibility of
applying the rich theory of matching markets from game theory
to address various aspects of the VM coscheduling problem
such as stability, coalitions and privacy both from a theoretical
and practical standpoint.

We also propose a new workload characterization technique
for a combination of compute and memory intensive workloads.
The proposed technique uses a sentinel program and it requires
only two runs per workload for characterization. VMs can use
this technique in deciding their partner preference ranks in
the SRP and SMP problems. The characterization technique
has also been used in proposing two new centralized VM
coscheduling algorithms whose performance is close to the
optimal Blossom algorithm.

Keywords-virtual machine coscheduling; workload charac-
terization; game theory; stable marriages problem;

I. INTRODUCTION

Virtualization technology provides for composing elastic
virtual machines (VMs) by virtualizing physical resources
like processors, main memory, storage and networking de-
vices [1], [4]. Each independent application can run on
one or more VMs which can be configured to specifically
suite the application needs. Application isolation, security
requirements and service-level agreements can be achieved

with relative ease when compared with multiple applications
running on a single big monolithic physical machine (PM).
Although application isolation in terms of the software
requirements is easy, performance isolation is not guaranteed
automatically as virtual machines running on the same
physical machine can interfere with each other. For example,
if two memory intensive VMs are assigned different cores on
a dual core physical machine, they contend for the same Last
Level Cache (LLC) polluting each others working set. This
will adversely impact the performance of the applications
running on those VMs. In general, a VM can undergo
performance degradation if it contends for the same resource
required by another VM. Performance degradation can be
measured using metrics such as response time for client-
server applications and running time for compute intensive
applications.

Consequently, placement of VMs on PMs is a critical task
as it directly affects the extent of performance degradation of
a VM. Virtual machine coscheduling problem aims at finding
a map between VMs and PMs while optimizing certain
performance metric. Two such notable metrics are average
and maximum performance degradation over all the VMs.
The number of PMs required to satisfy the service-level
agreements (SLAs) of all the VMs is yet another perfor-
mance metric. If we consider multiple performance metrics
simultaneously, then the coscheduling problem becomes a
multi-objective optimization problem and there can only be
pareto-optimal solutions.

The classical approach to solve the VM coscheduling
problem involves a central authority which decides the VM
mapping based on certain global objective function. This is
currently the case in data centers and public cloud providers
such as Amazon EC2 [28] and Microsoft Azure [8]. An
alternate approach is to consider a distributed coscheduling
algorithm wherein each VM chooses its own partner VM on
mutual consent. Each VM can have its own preference list
of partners based on a private benefit function. This problem
can be seen as the well-known Stable Roommates Problem
(SRP) [6], [18] from game theory and combinatorics. Irv-
ing [18] proposed a O(n2) time centralized algorithm to
determine a solution for an instance of SRP if there exists
one. We can circumvent the instability issues in the SRP
by reducing the coscheduling problem to Stable Marriages
Problem (SMP) [15], [19] through an initial approximation



described in this paper. Gale and Shapley [13] proved that
every instance of an SMP has a stable matching and gave a
polynomial time algorithm to construct the same. Gale and
Shapley’s SMP algortithm, and Irving’s SRP algorithm can
be run in a distributed fashion [7] by the participating VMs
wherein each of the VMs need not reveal their partner pref-
erences. Our formulation of the VM coscheduling problem
as an SRP or an SMP opens up the possibility of using the
rich theory of two sided matching market design [23].

A requirement for any VM coscheduling algorithm (cen-
tralized or distributed) is the characterization of a VM
workload and a model for its interference effects. In this
paper we propose an efficient workload characterization
technique which can be used by the VMs to arrive at
preference lists in SRP and SMP formulations. Using the
same characterization technique, we also propose two new
centralized approaches for VM coscheduling.

II. PROBLEM DEFINITION

Given n VMs and m k-core PMs, the VM coscheduling
problem is to assign each VM a core of a PM such that
certain objective function is optimized. In this paper, we only
consider dual core PMs. We can summarize the performance
degradation of VMs, when coscheduled with one of the other
VMs, by using an n×n matrix whose (i, j)th entry, denoted
as dij , indicates the performance degradation of ith VM
when coscheduled with jth VM. Note that the performance
degradation matrix is not symmetric. Given a performance
degradation matrix, we can consider one of the following
two objective functions for optimization.

1) sum-objective: Find an optimal coschedule such that
the sum of all the VM performance degradations is
minimized.

2) minmax-objective: Find an optimal coschedule such
that the maximum of all the VM degradations is
minimized.

The problem of optimizing the sum-objective function [21]
is equivalent to finding a minimum weight complete match-
ing in an undirected graph with n vertices. Each vertex in
the graph represents a VM and an edge (i, j) is annotated
with the weight dij + dji. There exists a polynomial time
algorithm to compute a minimum weight matching in a
graph and it is called as the Blossom algorithm [11]. The
weight of a matching is defined as the sum of all the edge
weights in it. Scheduling constraints arising due to SLAs
can be incorporated by removing the corresponding edges
from the graph. Optimizing the sum-objective function when
the number of cores per PM is greater than two is NP-
hard though [21]. Optimizing minmax-objective function is
equivalent to finding a minimal weight complete matching
in an undirected graph where the cost of a matching is
defined as the maximum of all the edge weights in it. Given
an n vertex graph with each edge (i, j) assigned a weight
max(dij , dji), optimizing the minmax-objective function is

equivalent to finding a minimal weight complete matching
in this graph. We are not sure if this graph problem has
a polynomial time algorithm. It can be formulated as a 0-
1 integer linear programming problem, though it does not
make it necessarily NP-hard.

sum and minmax are global objective functions which
a central authority like a data center administrator would
like to optimize. Fairness to all the VMs is one of the
guiding principles in defining a global objective function.
In contrast, we can envisage a setting in which each of the
VMs acts as a selfish agent and attempts to find a coschedule
partner maximizing its personal benefit locally. In the next
section, we formulate the coscheduling problem from this
perspective.

III. COSCHEDULING FROM A GAME THEORETIC
APPROACH

The theory of stable matching proposed by Gale and Shap-
ley [13] found important applications in mechanism design
for two sided matching markets such as college admissions
and kidney exchange programs [25]. In this section, we show
that the problem of VMs selfishly choosing their coschedule
partners in a distributed fashion is equivalent to the SRP, and
to the SMP via an initial approximation by a centralized
authority.

A. Stable Roommates Problem

The stable roommates problem (SRP) can be informally
described as identifying n stable roommate pairs from 2n
college students. Each student has a preference list from the
rest of the 2n − 1 students. A solution to an SRP instance
is said to be unstable if there exists two students who prefer
each other to their current roommates. Formally, let S be a
finite set of students with even cardinality. For every student
s ∈ S, let �s be a strict total order relation on set S −{s}.
If s1 �s s2, for s1, s2 ∈ S − {s}, then s strictly prefers s1
over s2.

Definition 1. A bijective function µ : S → S is said to be
a matching if µ(µ(s)) = s, ∀s ∈ S.

Definition 2. Two students s, s′ ∈ S constitute a blocking
pair (s, s′) with respect to a matching µ, if and only if,
µ(s′) �s µ(s) and µ(s) �s′ µ(s′).

Definition 3. A matching µ : S → S is said to be stable if
there exists no blocking pairs with respect to the matching
µ.

Definition 4. Every s ∈ S has a cost function Cs : S′ → R,
where S′ = S −{s}. The cost function Cs gives the cost to
s when it is being matched with an s′ ∈ S′.

Definition 5. The cost of a matching µ : S → S is defined
as ∑

s∈S
Cs(µ(s)).



Table I
AN SRP INSTANCE WITH NO STABLE MATCHING.

a → b c d
b → c a d
c → a b d
d → a b c

If we assume that each VM has a strict preference order
over the rest of the VMs as coschedule partners, then any
centralized or distributed algorithm for the SRP can be used
to obtain a stable VM coschedule.

Definition 6. We call the cost function associated with a VM
i as canonical if Ci(j) = dij , where dij is the degradation
of VM i when coscheduled with VM j.

A VM can keep its cost function private and use it to
construct its preference list. Each VM acts as a selfish agent
trying to obtain a partner occurring early in its preference
list. There exists SRP instances which does not have any sta-
ble matching. Table I depicts an SRP instance with no stable
matching [13]. Irving [18] gave a O(n2) time algorithm to
construct a stable matching for an SRP instance if there
exists one. Brito et al. [7] gave a distributed algorithm for
computing the stable matching wherein the individual agents
need not reveal their preference lists to any central authority.
Whenever an SRP instance does not have a stable matching,
we can opt for constructing a matching with minimal number
of blocking pairs. However, this is an NP-hard problem and
not even approximable within an ε > 0 factor unless P=NP
[6].

1) Price of Anarchy: In game theory, price of anarchy
quantifies the social cost due to the selfish behaviour of
agents. For a given performance degradation matrix M, let
PM be the optimal value of the sum-objective function. Let
P ′M be the cost of some stable matching wherein each VM
uses the canonical cost function. Then the price of anarchy
(PoA) is defined as

PoA =
P ′M
PM

.

We show that the PoA is not bounded by any constant.
Consider the following performance degradation matrix cor-
responding to four VMs; let 0 < δ < 1 and γ > 1.


a b c d

a 0 1 γ γ
b 1 0 1− δ γ
c γ 1− δ 0 1
d γ γ 1 0


The diagonal entries does not have any significance as we do
not schedule a VM with itself. The matching corresponding
to the optimal sum-objective function value is {(a, b), (c, d)}
and its cost is 4. And, {(a, d), (b, c)} is the only stable
matching with an associated cost of 2γ + 2(1− δ). We can

see from the following limit that the PoA is not bounded by
any constant.

lim
γ→∞

PoA = lim
γ→∞

2γ + 2(1− δ)
4

=∞

Using the above example, we can construct an ensemble of
degradation matrices such that the PoA for that ensemble is
not bounded by any constant.

B. Stable Matching Problem

Stable matching problem (SMP) is similar to the SRP
except that the set S is divided into two disjoint sets (men
and women) of equal size. Each person accepts a match with
only a person from the opposite sex. Gale and Shapley [13]
proved that there exists atleast one stable matching for every
SMP instance. Formally, let M and W be the set of men and
women respectively with equal cardinality. Every m ∈ M
has a strict total ordering relation �m on W . If w1 �m w2,
for w1, w2 ∈W , then that means m strictly prefers w1 over
w2. Analogously, there is a strict total order relation �w on
M for every w ∈W .

Definition 7. A stable matching µ : M →W is a bijective
function such that there exists no m ∈M,w ∈W such that
w �m µ(m) and m �w µ(w).

We cannot use the SMP directly to formulate the VM
coscheduling problem, as any VM can partner with any
other VM. However, we propose a heuristic function in
Section V-B which partitions the set of available VMs into
two sets M and W of equal size. After the initial partition
we can apply any centralized or distributed algorithm [7]
to solve the SMP instance. The initial step by a central
authority to reduce the coscheduling problem into the SMP
problem can be seen as an instance of Stackelberg games
[12].

1) Price of Anarchy: We show that the PoA is not
bounded by any constant even in the SMP formulation of the
coscheduling problem. Consider the following performance
degradation matrix for 4 VMs, such that 0 < δ < 1 and
γ > 1. 

a c b d

a 0 γ 1 γ
c γ 0 1− δ 1
b 1 1− δ 0 γ
d γ 1 γ 0


The above performance degradation matrix is exactly same
as the one we considered for the SRM problem in the
SectionIII-A1. So the optimal sum-objective function value
is still 4. Let the VMs a and c are in the partition M , and the
rest of the two VMs are in the partition W . Then the only
existing stable matching is {(a, d), (b, c)} with an associated
cost of 2γ + 2(1− δ). Similar to the SRP example, we can
see that limγ→∞ PoA = ∞, proving that the PoA is not
bounded by any constant. We can embed this performance



degradation matrix as a sub-matrix of any n×n degradation
matrix to show that the PoA is not bounded by any constant
as the number of VMs grow asymptotically.

2) Optimality: It is a well-known fact that in the Gale-
Shapley algorithm for the SMP problem, if men are the
proposers, then each of them gets the best partner when
compared to any stable matching. This version of the Gale-
Shapley algorithm is called as men-optimal. However, each
of the women gets the worst partner when compared to any
stable matching. So the VMs in the men partition will be
favoured in the men-optimal algorithm. The central authority
could do the partition in such a way that the impact of this
asymmetry in the Gale-Shapley algorithm is minimized. We
can define a sex-neutral version of the SMP problem and it
turns out that any reasonable notion of sex-neutrality makes
the problem NP-complete.

3) Strategy Proof: In the game theory terminology, Gale-
Shapley algorithm is an example of a mechanism which
gives a stable matching for a given preference list. It is pos-
sible that a VM can use an alternate preference list than its
true one, to manipulate the Gale-Shapley algorithm to obtain
better partner. We say that a mechanism is strategy proof if
using the actual preference list is the dominant strategy for
all the participating entities. It has been proved that there
exists no strategy proof mechanism for the SMP problem
[23]. However, the men-optimal Gale-Shapley algorithm is
strategy proof for men, in the sense, they are better off using
their actual preference lists.

IV. WORKLOAD CHARACTERIZATION

Any centralized (like Blossom) or distributed placement
algorithm which requires the computation of the perfor-
mance degradation matrix is infeasible in practice as it
requires Θ(n2) VM coruns, where n is the number of
VMs. In this section, we propose a workload characterization
technique which requires Θ(n) VM runs. In the next section,
we discuss its application in the stable matching setting;
and also develop two new centralized VM coscheduling
algorithms.

Our characterization technique is specifically aimed at a
combination of compute and memory intensive workloads.
Other types of workloads such as I/O bound or network
bound are not considered. A two level characterization
approach is adopted. The first level involves a coarse grained
workload classification. At the second level, we order a
collection of workloads based on their LLC usage by ob-
serving the performance degradation they would induce on
a coscheduled sentinel program.

A. Workload Classification
We classify a given workload into one of the following

three categories.
1) Compute Intensive (CI): Compute intensive workloads

have small working sets which completely fit into
cache and hence low CPI.

Table II
SPEC CPU2006 WORKLOAD CLASSIFICATION (cpiUL=0.7,

mpkiLL=6.0)

Name CPI MPKI CLass

416.gamess 0.42100 0.00574 CI
464.h264ref 0.47000 0.09310 CI
456.hmmer 0.51500 0.01937 CI
400.perlbench 0.53200 0.53667 CI
462.libquantum 0.91500 8.99225 MI
450.soplex 1.27300 9.54089 MI
433.milc 1.31400 17.82290 MI
458.sjeng 0.70200 0.44136 MX
434.zeusmp 0.71400 2.29561 MX
481.wrf 0.76400 1.27042 MX
435.gromacs 0.78000 0.10849 MX

2) Memory Intensive (MI): Memory intensive workloads
have large working sets when compared to the avail-
able cache size. Due to this they have high cache
misses per kilo instructions (MPKI) and thereby higher
CPI.

3) Mixed (MX): This class consists of programs which
cannot be clearly classified as either compute or mem-
ory intensive.

Algorithm 1 depicts our approach for the classification of
workloads into CI, MI or MX types. The two parameters of
the algorithm, cpiUL and mpkiLL, are obtained by analyzing
a diverse collection of workloads on a target architecture.
This is an offline one-time process. In this paper, we used
SPEC CPU2006 [16] collection of programs to determine
these parameters. We first separate the SPEC CPU2006
programs with relatively high MPKI when compared with
the rest and classify them as memory intensive. This can be
done algorithmically by clustering programs based on the
MPKI dimension alone. Among the MPKIs corresponding to
the memory intensive programs, we set mpkiLL to the lowest
value. The rest of the programs in the SPEC CPU2006 are
sorted according to their CPI. The first half of the sorted
list is classified as compute intensive and the second half
as mixed. The parameter cpiUL is set to the CPI value
of the last program in the first half. An alternate way to
choose cpiUL is by clustering the programs into two groups
using their CPIs. Table II shows the classification of some
of the workloads from SPEC CPU2006 suite on an Intel i3-
2120 processor with 4 GB of RAM. The CPI and MPKI for
any workload can be easily measured using the hardware
performance counters available in most modern processors.

1) Partner Affinity: For each workload type in SPEC
CPU2006, we identify a cluster leader. The cluster leader for
compute intensive and mixed workloads is chosen by identi-
fying the program whose CPI is closest to the cluster mean
CPI. For memory intensive programs, the cluster leader is
the one whose MPKI is closest to the cluster mean MPKI.
Table III shows the coschedule partner preferences for each



Algorithm 1 Workload classification algorithm. cpiUL is the
CPI upper limit and mpkiLL is the MPKI lower limit. These
parameters are determined by an offline process.

1: if cpi ≤ cpiUL then
2: Classify the workload as CI;
3: else if MPKI >= mpkiLL then
4: Classify the workload as MI;
5: else
6: Classify the workload as MX;
7: end if

Table III
PARTNER AFFINITIES

Type 1 2 3

CI MX CI MI
MX MX CI MI
MI CI MX MI

workload type. This table is constructed by observing the
performance degradation matrix of cluster leaders.

B. Characterization using the Sentinel Program

We define a sentinel program as one whose performance
degradation is directly proportional to the LLC usage of the
corunning workload. Hence, the performance degradation
of the sentinel program will be small when corun with a
compute intensive workload as against a memory intensive
workload. The sentinel program could be either a synthetic
or a natural program. We propose an algorithmic technique
to choose an appropriate program as sentinel from a work-
load collection. This is a one-time job done offline. We
use the SPEC CPU2006 workloads to identify the sentinel
program.

Initially, we construct a performance degradation matrix,
Mn×n, where n is the number of programs in the workload
collection. The ith row of the matrix M summarizes the
performance degradation of the ith program with respect
to the rest of the programs. Let avg1×n be a row vector
whose ith entry contains the average of the ith column of
M . In other words, avg[i] gives the average performance
degradation induced by the ith program on its coschedule
partners. Intuitively, we would like to obtain this information
by running the ith program against the sentinel. Based
on this observation, we identify the row vector of the
matrix M which looks very similar to the avg vector and
choose the corresponding row program as the sentinel. We
constructively define the similarity metric between two row
vectors A1×n and B1×n as follows.

1) Sort the elements of the two arrays A and B. Replace
each element of the array with the index of its original
position in the array.

2) The distance between the two vectors A and B is
defined as the hamming distance between the two

transformed arrays.
Given a set of workloads, we run those workloads against
the sentinel program, and sort them according to the per-
formance degradation they cause to the sentinel program.
Programs occurring earlier in the list are more compute
intensive and those occurring near the end are more memory
intensive. In the next section, we show how we can use this
sorted workload list along with their types in coscheduling
algorithms.

V. APPLICATIONS OF WORKLOAD CHARACTERIZATION

Let W1×n be the sorted list of workloads obtained using
the sentinel program.

A. Preference Order Selection

In the SRP, each VM has to arrive at its preference list.
A VM constructs its preference list by using the following
two rules.

1) A VM whose workload type is preferred against
another in accordance with the Table III occurs first
in the list.

2) If two VMs have the same type, their order in the
workload list W is preserved.

B. VM Partitioning in the SMP

In the SMP, a central authority partitions the VMs into
two equal groups. The partitioning of the VMs is done
by splitting the workload list W at the middle. Intuitively,
workloads in the second half are cache-hungry and therefore
it is a good idea not to schedule them together. After the
initial partition, each VM finds a stable partner from the
other partition. Each VM can arrive at its preference order
in the same way as that of SRP except that the VMs from
the same partition are eliminated from the preference list.

C. Coscheduling as Weighted Bipartite Graph Matching

We know that the coscheduling problem can be formu-
lated as a matching problem in a complete graph. However,
it requires n(n − 1)/2 VM coruns to annotate the edges
of the graph. We can reduce the number of VM coruns to
2n+ n/2(n/2− 1)/2 by reducing the complete graph to a
bipartite graph by eliminating the edges between the VMs
belonging to the same partition (computed as in the SMP).

D. Naive Matching: A New Coscheduling Algorithm

We propose a new centralized coscheduling algorithm
called Naive Matching (NM) which uses the workload
list W and the type of each VM workload. The basic
version of the NM algorithm pairs the workloads from
the opposite ends of W giving rise to the coschedule
{(W1,Wn), (W2,Wn−1), · · · }. Intuitively, the NM algo-
rithm attempts to create a balance by pairing a compute
intensive workload with a memory intensive workload. In
the basic version of the NM algorithm, the workload types



Table IV
SPEC CPU2000 WORKLOAD CLASSIFICATION

Name CPI MPKI Class

164.gzip 0.786 0.08116 MX
168.wupwise 0.446 0.63273 CI
171.swim 1.018 3.72255 MX
172.mgrid 0.591 0.75447 CI
173.applu 0.68 1.09041 CI
175.vpr 1.122 2.94754 MX
176.gcc 0.697 0.70887 CI
177.mesa 0.486 0.18136 CI
179.art 1.235 2.50638 MX
181.mcf 6.052 68.91975 MI
183.equake 0.969 7.91738 MI
186.crafty 0.641 0.02144 CI
188.ammp 0.815 1.48509 MX
197.parser 1.023 1.04268 MX
200.sixtrack 0.529 0.03258 CI
253.perlbmk 0.94 0.92288 MX
254.gap 0.647 0.52449 CI
256.bzip2 0.701 0.73803 MX
300.twolf 0.883 0.01831 MX
301.apsi 0.73 1.72548 MX

and their partner affinities are not considered. The improved
NM-k algorithm considers the partner affinities and attempts
to find a match for a VM by considering a window of k VMs
from the list W . The algorithm starts with Wn and creates
a preference order list among the VMs W1 to Wk as in the
SRP. VM Wn is matched with the first VM in the preference
order list. The two matched VMs are removed from the list
W and the algorithm iterates until no more VMs are left
unmatched.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we give details of our experimental setup
and compare the performance of the SRP, SMP, BGM
and NM-k approaches with the Blossom algorithm. All
experiments are conducted on a machine with a dual core
Intel i3-2120 processor with 3MB of LLC. Each VM is
allocated 2 GB of RAM and is pinned to one of the cores of
the processor. The test workloads which run on these VMs
consist of 20 programs from SPEC CPU2000. Table IV gives
their CPI, MPKI and workload type as determined by the
workload classification algorithm. In order to avoid over-
fitting, the sentinel program (482.sphinx3) is extracted
from the SPEC CPU2006 benchmark suite.

The following list summarizes different implementations
of the coscheduling algorithms whose performance we com-
pare in this section.

1) Blossom: Applies the Blossom algorithm on the actual
degradation matrix. Theoretically this should give the
best average VM degradation.

2) BGM: Implementation based on the bipartite graph
matching algorithm as described in Section V-C.

3) NM-1: Naive matching with a window size 1.
4) NM-2: Naive matching with a window size 2.

Table V
PERFORMANCE SUMMARY OF VARIOUS COSCHEDULING ALGORITHMS.

APD AND MAXD CORRESPOND TO THE AVERAGE AND MAXIMUM
PERFORMANCE DEGRADATIONS MEASURED IN PERCENTAGE.

Model APD MaxD
Blossom 14.78 50.67
BGM 15.86 50
NM-1 17.08 61.11
NM-2 16.68 61.11
NM-3 15.75 61.11
SRP-A 24.86 71.05
SRP-S 27.50 163.37
SMP-Men-A 21.83 101.28
SMP-Men-S 20.02 55.56
SMP-Women-A 22.70 61.11
SMP-Women-S 24.29 169.23

5) NM-3: Naive matching with a window size 3.
6) SRP-A: SRP approach wherein each VM arrives at

its preference list using the corresponding row in the
performance degradation matrix.

7) SRP-S: SRP approach wherein each VM arrives at
its preference list using the sentinel program and the
workload type.

8) SMP-Men-A: Men optimal SMP approach wherein
preference lists are computed similar to SRP-A.

9) SMP-Men-S: Men optimal SMP approach wherein
preference lists are computed similar to SRP-S.

10) SMP-Women-A: Women optimal SMP approach
wherein preference lists are computed similar to SRP-
A.

11) SMP-Women-S: Women optimal SMP approach
wherein preference lists are computed similar to SRP-
S.

Figures 1 and 2 summarize the performance of various
coscheduling algorithms with respect to the parameters
average program degradation (APD) and maximum program
degradation (MaxD). Table V presents the same data in
a form suitable for easy comparison between APD and
MaxD. The performance of the BGM, NM-1, NM-2, NM-3
approaches matches that of the Blossom’s. This indicates
the effectiveness of our characterization technique using
the sentinel program. SRP, SMP and their variants perform
decently with respect to the parameter APD when compared
to Blossom’s. However, the performance is really bad with
respect to the parameter MaxD. This could be attributed
to the social cost of selfish behaviour of the VMs wherein
fairness to all the VMs is not at all a criteria. Also, the
performance with respect to the parameter APD roughly
remains the same irrespective of whether the preference lists
are constructed using the actual degradation matrix or the
sentinel program. However, with respect to the parameter
MaxD, there is a substantial performance fluctuation. This
probably indicates that the parameter MaxD is very sensitive
to the changes in the preference order lists of the VMs.

We performed a statistical experiment to observe the



Figure 1. Average VM performance degradation (in percentage). Figure 2. Maximum VM performance degradation (in percentage).

Table VI
TOP 5 SENTINEL PROGRAMS FROM SPEC CPU2006 AND THEIR

FREQUENCIES

Ratio

Program 0.5 0.66 0.72

482.sphinx3 1808 3310 4305
403.gcc 1227 1571 1699
433.milc 760 640 442
445.gobmk 713 688 577
471.omnetpp 666 643 568

Sum of top 5 5174 6852 7591

variations in the choice of the sentinel extraction algorithm
as a function of the workload collection. Towards that, we
pick a random subset of the SPEC CPU2006 suite such that
it consists of at least one workload from each of the CI, MX
and MI types. The sentinel extraction algorithm chooses a
sentinel program from the random subset. The experiment
is repeated 10000 times for three different subset sizes. The
fractional size of the subset in the three cases are 0.5, 0.66
and 0.72. Table VI shows the top five workloads frequently
chosen as the sentinel. We can see that 482.sphinx3 is
consistently being selected as the sentinel program for the
majority of runs for the different ratios.

VII. RELATED WORK

Jiang et al. [20] showed that finding an optimal coschedule
on a set of dual core machines is equivalent to finding a min-
imum weight perfect matching in a graph. They also proved
that the problem becomes NP-complete if the underlying
processors have more than 2 cores and proposed a set of
heuristic algorithms for the same. Tian et al. [2] investigated
the complexity of finding VM coschedules while minimizing
the makespan of the schedule. The makespan of a schedule
is the time taken by all the jobs to finish. To the best of
our knowledge coscheduling problem has not been studied
from a game theoretic perspective so far in the research
literature. The closest resembling work is due to Suri et

al. [26] who formulated the selfish load balancing problem
as an atomic congestion game. Interestingly, they show that
under certain assumptions the Nash assignment approaches
the social optimum and the price of anarchy is bounded by a
constant. Berenbrink et al. [5] and Adolphs et al. [3] studied
the distributed version of the selfish load balancing problem.

There has been considerable amount of research on
the workload classification and characterization problem.
Zhang et al. [29] showed how to use hardware performance
counters for workload modeling; and CPU scheduling to
improve performance and fairness. Chang et al. [9] proposed
a cooperative cache partitioning technique for multiplexing
the cache resources to the threads running concurrently on
a multi-core machine. The application of this technique in
the context of multiple VMs running on a single machine
is yet to be investigated. Huang et al. [17] proposed a
software controlled mechanism for last level cache partition-
ing to reduce cache pollution. Dwyer et al. [10] proposed
a machine learning based technique with a selection of
hardware performance counters as features to estimate the
performance degradation of a workload online. Tam et al.
[27] proposed a thread clustering technique which uses
performance counters to reduce cross-chip cache accesses.
Snavely et al. [24] proposed a coscheduling strategy which
involves an overhead-free sample phase and a symbiosis
phase to determine an effective schedule on a simultaneous
multithreaded (SMT) processor. Govindan et al. [14] pro-
posed an elegant system called Cuanta in which a synthetic
cache loader program is used to profile the cache usage
behaviour of an application. Mars et al. [22] proposed a
performance degradation prediction technique by computing
a sensitivity curve for each workload by running them
against a bubble program. The bubble program can be tuned
to put varying levels of pressure on the cache.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we provide a new game theoretic perspective
to the VM coscheduling problem using the theory of stable
matchings. This alternate perspective opens up the possibil-



ity of using the tools and techniques from the rich theory
of matching markets to address problems such as auction
strategies for resources; coalitions and privacy preserving
algorithms. We also proposed a new workload characteriza-
tion technique using a sentinel program. The characterization
technique requires only two runs of a workload, the first
run by itself and the second run coscheduled with the
sentinel program. The workload characterization technique
helps the VMs to construct their preference lists in the stable
matching setting. Using the same characterization technique
we propose two new centralized coscheduling algorithms
whose performance is very close to the optimal Blossom
algorithm. The optimal algorithm requires the construction
of a performance degradation matrix using a quadratic
number of VM coruns.
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